摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
Apparatus and methods for stenting are provided comprising a stent attached to a porous biocompatible material that is permeable to endothelial cell ingrowth, but impermeable to release of emboli of predetermined size. Apparatus and methods are also provided for use at a vessel branching. The present invention further involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
A reversible applicator for an intraluminal endoprosthesis with a pusher, an outer sheath sliding longitudinally relative to this pusher, and an endoprosthesis arranged at it's distal part. A retention element formed by an expandable braid that widens in a bulb shape in the expanded state, integrally joined to the pusher, is arranged longitudinally inside the endoprosthesis that is to be fitted in place. This bulb compresses the proximal part of the endoprosthesis against an inner wall of the sheath in such a way as to allow the endoprosthesis to be retracted inside the sheath.
摘要:
A reversible applicator for an intraluminal endoprosthesis comprising a pusher an outer sheath sliding longitudinally relative to this pusher (13), and an endoprosthesis arranged at its distal part. A retention element formed by an expandable braid that widens in a bulb shape in the expanded state, integrally joined to the pusher, is arranged longitudinally inside the endoprosthesis that is to be fitted in place. This bulb compresses the proximal part of the endoprosthesis (2) against an inner wall of the sheath in such a way as to allow the endoprosthesis to be retracted inside the sheath.