摘要:
Apparatus and methods for stenting are provided comprising a stent attached to a porous biocompatible material that is permeable to endothelial cell ingrowth, but impermeable to release of emboli of predetermined size. Apparatus and methods are also provided for use at a vessel branching. The present invention further involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
The present invention involves porous polymer membranes, suitable for use in medical implants, having controlled pore sizes, pore densities and mechanical properties. Methods of manufacturing such porous membranes are described in which a continuous fiber of polymer is extruded through a reciprocating extrusion head and deposited onto a substrate in a predetermined pattern. When cured, the polymeric material forms a stable, porous membrane suitable for a variety of applications, including reducing emboli release during and after stent delivery, and providing a source for release of bioactive substances to a vessel or organ and surrounding tissue.
摘要:
A medical device for the delivery of treatment fluid to body vessels is described. The device has a distal (21) and a proximal (20) end with a self-expanding, hollow tubular member (9) and a delivery catheter (10) suitable for deploying a self-expanding, tubular member (9). The tubular member (9) is configured to expand radially to form a central part (11) flanked by two annular ridges, which creates, in situ, an annular lumen that can apply treatment fluid locally to a vessel and a passageway that can maintain the flow of blood through the vessel. The device is particularly suited for minimally invasive and repeatable organ perfusion. A method for organ perfusion is also disclosed.
摘要:
A medical device for the delivery of treatment fluid to body vessels is described. The device has a distal (21) and a proximal (20) end with a self-expanding, hollow tubular member (9) and a delivery catheter (10) suitable for deploying a self-expanding, tubular member (9). The tubular member (9) is configured to expand radially to form a central part (11) flanked by two annular ridges, which creates, in situ, an annular lumen that can apply treatment fluid locally to a vessel and a passageway that can maintain the flow of blood through the vessel. The device is particularly suited for minimally invasive and repeatable organ perfusion. A method for organ perfusion is also disclosed.