Abstract:
The present invention relates to an electronic circuit, apparatus and method for monitoring and controlling power consumption. Accordingly, there is provided an electronic circuit, apparatus and method that includes one or more sequential logic elements (12) that are capable of receiving a clock signal (CLK) and an input signal (I) and providing an output signal (O). The sequential logic element (12) further comprises circuitry (20) for monitoring the input and output signals (I, O), and providing a control signal (CS) in response to the input and output signals (I, O), wherein the IC's power consumption is operatively controllable in response to the control signal.
Abstract:
A control system (100) for controlling a power consumption of an electronic device (300) is provided. The electronic device is adapted to communicate with a reader device via a wireless communication interface. The control system comprises a measuring unit (102) being adapted for measuring an actual field strength of an electromagnetic field provided by the reader device to the control system, a power delivery unit (101) being adapted for delivering power received via the electromagnetic field to the electronic device, and a control unit (103) being coupled to the measuring unit and being adapted for providing a control signal to the electronic device for controlling the consumption of the power being delivered to the electronic device, wherein the control signal is based on the actual field strength of the electromagnetic field.
Abstract:
An encoded-low swing scheme for transmission of a signal across an interconnect bus whereby the current values to be transmitted on the bus are compared with the previous state of the bus. When the number of bits flipping is greater than N, where N is the width of the bus, the decision to transmit the inverted signal values is made. In addition, an “invert” signal is also sent to the receiver to indicate whether the bus values are inverted or not. These encoded values are then converted into their low swing equivalents and transmitted. In this way, it can be ensured that the energy consumed over the interconnect is minimum. This strategy not only reduces the probability of transitions over the interconnect but also transmits only low swing values to achieve tremendous energy reductions relative to conventional techniques.