Abstract:
A plate cassette loader for a platesetter comprises a cassette holder for receiving a cassette, containing a stack of plates. A cassette inverter then rotates this cassette to a feed position in which the plates can be fed into the imaging engine of the platesetter. In this way, the somewhat unwieldy process of loading plates into the imaging engine is handled by the cassette inverter, in combination with the fact that the stack of plates, contained in the cassette, can be loaded in one step, rather than requiring the feeding of individual plates by a dedicated operator.
Abstract:
A substrate manager for a substrate exposure machine is used, in one example, as a platesetter. As such, it comprises a substrate storage system, containing one or more stacks of substrates, such as plates in one implementation. A substrate picker is provided for picking substrates from the stack of substrates. The substrates are then handed to a transfer system that conveys the substrates to an imaging engine. According to the invention, a substrate inverter system is also provided. This system inverts the substrates from being imaging or emulsion side down to emulsion side up in the present implementation. This allows plates, for example, which are stored emulsion side down in cassettes to be flipped to an emulsion side up orientation, and then transferred, using the substrate transfer system to the imaging engine. This flipping process has two advantages. First, the plates can be emulsion side up during the transfer. This prevents any damage to the sensitive plate emulsions. Moreover, the plates, now in an emulsion side up configuration are in the right orientation for being installed on the outside of a drum on an external drum imaging system, as is common in many platesetters. Also, the plates are picked from the non emulsion side. Thus the system is less sensitive to emulsion formulation changes. A slip sheet capture mechanism is also provided to pass slip sheets separating the plates to a storage location.
Abstract:
A method and apparatus automatically switches from one web media type to another, using a single drive roller to access and drive one of two web media supply cassettes mounted within an imaging system. A gear motor and eccentric shaft position and load the drive roller against either of two driven rollers. The media is nipped between the drive roller and one of the driven rollers and is advanced by the drive roller into the imaging system as needed. To switch media supply cassettes, the media is cut beyond the drive roller. The media is then drawn back into the supply cassette to free the media path for the alternate media to advance from the other of the two media supply cassettes.
Abstract:
A substrate manager for a substrate exposure machine is used, in one example, as a platesetter. As such, it comprises a substrate storage system, containing one or more stacks of substrates, such as plates in one implementation. A substrate picker is provided for picking substrates from the stack of substrates. The substrates are then handed to a transfer system that conveys the substrates to an imaging engine. According to the invention, a substrate inverter system is also provided. This system inverts the substrates from being imaging or emulsion side down to emulsion side up in the present implementation. This allows plates, for example, which are stored emulsion side down in cassettes to be flipped to an emulsion side up orientation, and then transferred, using the substrate transfer system to the imaging engine. This flipping process has two advantages. First, the plates can be emulsion side up during the transfer. This prevents any damage to the sensitive plate emulsions. Moreover, the plates, now in an emulsion side up configuration are in the right orientation for being installed on the outside of a drum on an external drum imaging system, as is common in many platesetters. Also, the plates are picked from the non emulsion side. Thus the system is less sensitive to emulsion formulation changes. A slip sheet capture mechanism is also provided to transfer slip sheets separating the plates to a storage location.
Abstract:
A method and apparatus for reducing artifacts in an imaging system by directing a stream of air onto the beam deflection assembly of the imaging system. An air displacement system, such as a fan assembly or the like, is oriented to direct, a stream of air onto the rotating deflector element of the beam deflection assembly. The stream of air is positioned to distribute a substantially uniform amount of air around the rotating deflector element.