摘要:
Silicon-containing particles are used for protection of industrial materials, such as electrooptical layers or electrooptical components, from electromagnetic radiation in the UV range and optionally in the visible as far as the IR range, wherein the particles take the form of primary particles having a particle size in the range from 1 to 100 nm and may optionally take the form of clusters of the primary particles. A particular advantage is the possibility of matching the absorption of the electromagnetic radiation to the wavelength region to be absorbed that is of interest in a defined manner via the particle size and the particle size distribution. The silicon-containing particles can be used as biocompatible and biodegradable UV protection in industrial applications and compositions for industrial applications as formulations, such as preferably in coating compositions, such as paint.
摘要:
The invention relates to a process for preparing trisilylamine and polysilazanes in the liquid phase, in which ammonia dissolved in an inert solvent is initially introduced in a substoichiometric amount relative to monochlorosilane which is likewise present in an inert solvent. The reaction is carried out in a reactor in which trisilylamine formed according to the following equation 4NH3+3H3SiCl→3NH4Cl+(SiH3)3N and polysilazanes are formed. The reactor is subsequently depressurized and TSA is separated off in gaseous form from the product mixture. The TSA obtained is purified by filtration and distillation and obtained in high or very high purity. Further ammonia dissolved in an inert solvent is subsequently introduced into the reactor, using, together with the previously introduced amount of ammonia, a stoichiometric excess of ammonia relative to the amount of MCS previously present. Excess ammonia is subsequently discharged, inert gas is introduced and the bottom product mixture from the reactor is passed through a filter unit, with solid ammonium chloride being separated off and a liquid mixture of polysilazanes and solvent being obtained.
摘要:
A process for producing trisilylamine in the liquid phase by charging monochlorosilane in the liquid state in a solvent at elevated temperature, and reacting the monochlorosilane with NH3 in a stoichiometric excess is provided. Additionally provided is a production unit for carrying out the process.
摘要:
The invention relates to a process for preparing trisilylamine and polysilazanes in the liquid phase, in which ammonia dissolved in an inert solvent is initially introduced in a substoichiometric amount relative to monochlorosilane which is likewise present in an inert solvent. The reaction is carried out in a reactor in which trisilylamine formed according to the following equation 4NH3+3H3SiCl→3NH4Cl+(SiH3)3N and polysilazanes are formed. The reactor is subsequently depressurized and TSA is separated off in gaseous form from the product mixture. The TSA obtained is purified by filtration and distillation and obtained in high or very high purity. Further ammonia dissolved in an inert solvent is subsequently introduced into the reactor, using, together with the previously introduced amount of ammonia, a stoichiometric excess of ammonia relative to the amount of MCS previously present. Excess ammonia is subsequently discharged, inert gas is introduced and the bottom product mixture from the reactor is passed through a filter unit, with solid ammonium chloride being separated off and a liquid mixture of polysilazanes and solvent being obtained.
摘要:
The invention relates to a process for preparing trisilylamine and polysilazanes in the liquid phase, in which ammonia is introduced in a superstoichiometric amount relative to 5 monochlorosilane which is present in an inert solvent. Here, a reaction in which trisilylamine and polysilazanes are formed proceeds. TSA is subsequently separated off in gaseous form from the product mixture. The TSA obtained is purified by filtration and distillation and obtained in high or very high purity. The bottom product mixture is conveyed from the reactor through a filter unit in which solid ammonium chloride is separated off to give a liquid mixture of polysilazanes and solvent. This is fed to a further distillation to recover solvent. As a result of the NH3 being introduced in a superstoichiometric amount relative to monochlorosilane, monochlorosilane is completely reacted in the reactor. This completely prevents the reaction of monochlorosilane with additional disilylamine formed in small amounts to form solid ammonium chloride in the downstream plant parts for purification of the TSA. The solutions filtered downstream of the reactor are accordingly completely free of solids.