Abstract:
The invention concerns a method for making ammonium dinitramide from guanylurea dinitramide in one single process step. Guanylurea dinitramide is reacted with an ammonium sulfate in a reaction solution comprising water and acetone and an ion exchange gives ammonium dinitramide. By using acetone the yield is increased compared to known processes as formed guanylurea sulfate is poorly soluable in a water-acetone solution and precipitates, while guanylurea dinitramide has higher solubility in the solution than in only water. The guanylurea sulfate precipitate formed in the reaction solution that contains acetone is less sticky than if formed in water or in a water-alcohol solution and therefore easier to filter off. The use of acetone also allows lower process temperatures to be used than in previously known methods for producing guanylurea dinitramide. Conclusively, the method gives a higher yield, demands considerable smaller amounts of solvent and allows lower process temperatures to be used than in any formerly known process.
Abstract:
A Si-containing film forming composition comprising a catalyst and/or a polysilane and a N—H free, C-free, and Si-rich perhydropolysilazane having a molecular weight ranging from approximately 332 dalton to approximately 100,000 dalton and comprising N—H free repeating units having the formula [—N(SiH3)x(SiH2-)y], wherein x=0, 1, or 2 and y=0, 1, or 2 with x+y=2; and x=0, 1 or 2 and y=1, 2, or 3 with x+y=3. Also disclosed are synthesis methods and applications for using the same.
Abstract:
An economical method for recovering phosphate or phosphate and nitrogen from liquid streams. A liquid containing phosphate is introduced into a culture of autotrophic microorganisms in the presence of natural or artificial light, thereby producing a liquid effluent with elevated pH and reduced alkalinity. The alkalinity is reduced through the consumption of bicarbonate/carbonate by the autotrophic microorganisms. The effluent is then chemically treated with low-cost chemicals to provide Ca++ or Mg++ ions necessary to form a phosphate precipitate such as calcium phosphate or magnesium-ammonium-phosphate (MAP). The autotrophic microorganisms can be cultivated in ponds, lagoons, or photobioreactors. The pH of the culture is adjustable within a preferred range of 7.5 to 10.5 by adjusting the photobioreactor operation. The process includes an economical flotation separator for solid, liquid, gas separation and a means of concentrating ammonia nitrogen that may also be removed during the process of phosphate reclamation.
Abstract:
The present invention is directed to modifications of bitumen and heavy oil upgrading and refining processes to synthesize synthetic crude oil and other valuable synthesized hydrocarbon products in an efficient manner along with the production of commercially valuable co-products from by-products formed by the upgrading process.
Abstract:
A process for producing ammonia and a derivative of ammonia from a natural gas feed comprising conversion of natural gas into a make-up synthesis gas; synthesis of ammonia; use of said ammonia to produce said derivative of ammonia, wherein a portion of the natural gas feed is used to fuel a gas turbine; power produced by said gas turbine is transferred to at least one power user of the process, such as a compressor; heat is recovered from exhaust gas of said gas turbine, and at least part of said heat is recovered as low-grade heat available at a temperature not greater than 200° C., to provide process heating to at least one thermal user of the process, such as CO2 removal unit or absorption chiller; a corresponding plant and method of modernization are also disclosed.
Abstract:
The present invention relates to a specific process for producing trisilylamine from monochlorosilane and ammonia in the liquid phase. The invention further relates to a plant wherein such a process can be carried out with advantage.
Abstract:
The method described herein provides a method for preparing trisilylamine. In one aspect, the method comprises: providing a reaction mixture of trisilylamine and monochlorosilane into a reactor wherein the reaction mixture is at a temperature and pressure sufficient to provide trisilylamine in a liquid phase wherein the reaction mixture is substantially free of an added solvent; contacting the reaction mixture with ammonia to provide a crude mixture comprising trisilylamine and an ammonium chloride solid wherein monochlorosilane is in stoichiometric excess in relation to ammonia; purifiying the crude mixture to provide trisilylamine wherein the trisilyamine is produced at purity level of 90% or greater; and optionally removing the ammonium chloride solid from the reactor.
Abstract:
An economical method for recovering phosphate or phosphate and nitrogen from liquid streams. A liquid containing phosphate is introduced into a culture of autotrophic microorganisms in the presence of natural or artificial light, thereby producing a liquid effluent with elevated pH and reduced alkalinity. The alkalinity is reduced through the consumption of bicarbonate/carbonate by the autotrophic microorganisms. The effluent is then chemically treated with low-cost chemicals to provide Ca++ or Mg++ ions necessary to form a phosphate precipitate such as calcium phosphate or magnesium-ammonium-phosphate (MAP). The autotrophic microorganisms can be cultivated in ponds, lagoons, or photobioreactors. The pH of the culture is adjustable within a preferred range of 7.5 to 10.5 by adjusting the photobioreactor operation. The process includes an economical flotation separator for solid, liquid, gas separation and a means of concentrating ammonia nitrogen that may also be removed during the process of phosphate reclamation.
Abstract:
The invention relates to a process for preparing trisilylamine and polysilazanes in the liquid phase, in which ammonia dissolved in an inert solvent is initially introduced in a substoichiometric amount relative to monochlorosilane which is likewise present in an inert solvent. The reaction is carried out in a reactor in which trisilylamine formed according to the following equation 4NH3+3H3SiCl→3NH4Cl+(SiH3)3N and polysilazanes are formed. The reactor is subsequently depressurized and TSA is separated off in gaseous form from the product mixture. The TSA obtained is purified by filtration and distillation and obtained in high or very high purity. Further ammonia dissolved in an inert solvent is subsequently introduced into the reactor, using, together with the previously introduced amount of ammonia, a stoichiometric excess of ammonia relative to the amount of MCS previously present. Excess ammonia is subsequently discharged, inert gas is introduced and the bottom product mixture from the reactor is passed through a filter unit, with solid ammonium chloride being separated off and a liquid mixture of polysilazanes and solvent being obtained.
Abstract:
Methods for producing construction material utilizing loose pieces of aggregate (30), enzyme producing cells, an amount of urea and an amount of calcium ions. A first solution is prepared which includes urease which is formed by enzyme producing cells. A second solution is prepared which includes urea and calcium ions. The first and second solutions are added to the loose aggregate (30). The calcium ions contribute to the formation of calcium carbonate wherein the calcium carbonate fills and bonds between at least some of the gaps between the loose pieces of aggregate forming a solid construction material (92).