摘要:
Described herein are methods for using bone morphogenetic proteins (BMPs), such as OP-1 (also known as BMP-7), to treat pain caused by osteoarthritis. The methods involve administering to a patient suffering from pain caused by osteoarthritis a BMP, for example, intraarticularly by injection directly into the joint afflicted with osteoarthritis. The methods of the invention provide long-term pain relief to sufferers of osteoarthritis and can improve the functionality of the joint to which the BMP is administered.
摘要:
Methods for preparing biodegradable microparticles are provided. Also provided are microparticles prepared by the method which include IGF-1 entrapped therein. The microparticles allow for controlled release of IGF-1 and other polypeptides over prolonged periods of time.
摘要:
The invention is directed to formulations of a pharmaceutically active agent for in vivo use. The formulations to which the invention is directed are designed to minimize the pain associated with components in injectable formulations, other than the pharmaceutically active agent. The invention is particularly directed to buffers that provide for minimum pain upon injection. Insulin-like growth factor I (IGF-I) is a preferred pharmaceutically active agent.
摘要:
Novel IGF-I compositions are described. The compositions include a solubilizing compound comprising a guanidinium group that provides for IGF-I compositions in which IGF-I is highly soluble at pHs of about 5.5 or greater and at refrigerated temperatures.
摘要:
Disclosed are multivesicular liposomes (MVLs) containing IGF-I with substantially full bioavailability, wherein the loading of the IGF-I into the liposomes is modulated by adjusting the osmolarity of the aqueous component into which the agents are dissolved prior to encapsulation. In the making of MVLs, the process involves dissolving the IGF-I, an osmolarity excipient, and a pH modifying agent sufficient to solubilize the IGF-I in a first aqueous component used during manufacture of the MVLs. To increase the loading of the IGF-I, the osmolarity of the aqueous component used during manufacture of the MVLs is reduced, whereas the osmolarity of the aqueous component is increased to obtain the low load formulations. The rate of release of the active agent into the surrounding environment in which the liposomes are introduced can be simultaneously controlled by incorporating into the lipid component used in the formulation at least one long chain amphipathic lipid. Use of the long chain amphipathic lipid in the lipid component is particularly helpful in controlling the release rate from high drug load formulations.
摘要:
A highly concentrated, low salt-containing, biologically active syrup form of IGF-I or variant thereof and methods for its preparation are provided. This novel syrup form of IGF-I has an IGF-I concentration of at least about 250 mg/ml, a density of about 1.0 g/ml to about 1.2 g/ml, and a viscosity of about 13,000 centipoise (cps) to about 19,000 cps, as measured at ambient temperature (23° C.). The IGF-I syrup is prepared by precipitating or partitioning IGF-I from solution, preferably by adjusting the solution pH or by use of a solubility enhancer to concentrate IGF-I in solution followed by removal of the solubility enhancer. The precipitated syrup is useful as a means of storing IGF-I in a stable form and as a means of preparing compositions comprising biologically active IGF-I. Pharmaceutical compositions and kits comprising this concentrated IGF-I syrup are provided. The precipitated IGF-I syrup, IGF-I reconstituted from the IGF-I syrup, pharmaceutical compositions, and kits are useful in IGF-I therapy directed to IGF-I-responsive conditions.
摘要:
Stabilized pharmaceutical compositions comprising substantially monomeric interferon-beta (IFN-β) and methods useful in their preparation are provided. The compositions comprise the IFN-β solubilized in a low-ionic-strength formulation that maintains the composition at a pH of about 3.0 to about 5.0. Methods for preparing these compositions, and for increasing solubility of IFN-β in pharmaceutical compositions, are provided.