Abstract:
A semiconductor memory array and method for use in a memory device in which the location of a memory cell in the array is specified by row address and column address decoders. The memory cells may be floating gate memory cells in which data is programmed by hot carrier injection and erased by Fowler-Nordheim tunneling. The array includes bit lines connected to the column address decoder, and word lines and N+ diffusion source lines connected to the row address decoder. Each memory cell has a gate connected to a word line, a drain connected to a bit line and a source connected to the N+ diffusion source line. A low resistance source line formed of metal II or other conductive material is arranged adjacent to each N+ source line and is electrically connected thereto at one or more locations via interconnecting straps. The low resistance source lines serve to reduce the voltage drop across the N+ diffusion source lines during program operations and provide an improved ground connection during read operations. The word lines are grouped into pairs of even and odd word lines and each pair makes up the minimum program unit or page. The page is also the minimum erase unit, such that adjacent even and odd word lines are erased simultaneously. The voltage applied to a given word line during a read operation may be supplied by a word line clamping circuit which limits gate disturbances resulting from fluctuations in supply voltage.
Abstract:
The inventions provides a method for identifying a target virus in an infected subject comprising the steps of designing a pair of degenerate primers corresponding to highly conserved regions of the target virus; designing a pair of species-specific primers according to highly variable sequences within the conserved regions of the target virus; preparing the species-specific probes according to the larger sequence variations within the conserved regions of the target virus, which are amplified with the species-specific primers as obtained; preparing a test sample by amplifying total nucleic acid of the infected subject with the degenerate primers as obtained; contacting the test sample with the species-specific probes as obtained; and detecting a hybridization between the species-specific probe and the test sample, wherein the hybridization indicates the target virus is identified in the infected subject. The primers and probes for detecting a garget virus are also provided.
Abstract:
A serial interface flash memory apparatus and a writing method for a status register thereof are disclosed. The writing method for the status register mentioned above includes: receiving a write command with an updated data for the status register; writing the updated data to a volatile latch and set an update flag according to whether or not a write-protected data in the status register is updated by the write command; and writing the data from the volatile latch to the status register according to the update flag when a power down process of the serial interface flash memory apparatus is processed.
Abstract:
A serial interface flash memory apparatus and a writing method for a status register thereof are disclosed. The writing method for the status register mentioned above includes: receiving a write command with an updated data for the status register; writing the updated data to a volatile latch and set an update flag according to whether or not a write-protected data in the status register is updated by the write command; and writing the data from the volatile latch to the status register according to the update flag when a power down process of the serial interface flash memory apparatus is processed.
Abstract:
The inventions provides a method for identifying a target virus in an infected subject comprising the steps of designing a pair of degenerate primers corresponding to highly conserved regions of the target virus; designing a pair of species-specific primers according to highly variable sequences within the conserved regions of the target virus; preparing the species-specific probes according to the larger sequence variations within the conserved regions of the target virus, which are amplified with the species-specific primers as obtained; preparing a test sample by amplifying total nucleic acid of the infected subject with the degenerate primers as obtained; contacting the test sample with the species-specific probes as obtained; and detecting a hybridization between the species-specific probe and the test sample, wherein the hybridization indicates the target virus is identified in the infected subject. The primers and probes for detecting a garget virus are also provided.