摘要:
In a driving circuit for an LCD backlight, a fundamental wave generator generates a triangle wave signal and a square wave signal in accordance with time constant of a time constant circuit including a time constant capacitor. A PWM comparator compares a difference signal between a feedback voltage and a preset reference voltage with the triangle wave signal to generate a PWM signal in response to the comparison result. A signal synchronizer sets a connection node between the time constant capacitor and the fundamental wave generator and an output terminal of the square wave signal in accordance with a power level of the LCD backlight. Also, a driving signal generator generates a driving signal in response to the square wave signal from the fundamental wave generator and the PWM signal from the PWM comparator. The driving circuit enables PWM controlling integrated circuits to be synchronized together.
摘要:
An LCD backlight inverter includes a soft starter for generating a soft-start reference voltage gradually increasing as the driving power begins to be supplied. The LCD backlight inverter also includes a first error detector for receiving a first feedback voltage indicating the magnitude of driving current of the lamp and for comparing a smaller value out of a predetermined first reference voltage and the soft-start reference voltage with the first feedback voltage to generate a first error signal corresponding to the difference between the smaller value and the soft-start reference voltage. The LCD backlight inverter further includes a pulse width modulation comparator for comparing the first error signal and a triangle wave oscillation signal to output the pulse width modulation control signal with a predetermined duty ratio. The LCD backlight inverter prevents application of over-current and over-voltage to the LCD backlight to prolong the lifetime of the backlight.
摘要:
Disclosed herein is a drive device of a color light emitting diode (LED) backlight, which is capable of precisely adjusting the forward voltages of color LED arrays for each channel.The drive device for driving the color light emitting diode (LED) backlight which includes a plurality of color LED arrays includes an I/O interface for inputting/outputting a signal, a control unit for controlling a driving voltage and driving current according to a brightness control signal output from the I/O interface, a DC/DC converter for converting an operation voltage into the driving voltage according to the driving voltage control of the control unit, a voltage regulator for regulating the driving voltage output from the DC/DC converter to a reference voltage without ripple, a multi-channel driving unit for converting the reference voltage output from the voltage regulator into forward voltages of the plurality of color LED arrays according to a plurality of control signals, and a current source for adjusting the amount of the driving current flowing in the color LED backlight according to the driving current control of the control unit.
摘要:
In an FSC mode LCD, a controller operates in response to an external adjustment, and a DC/DC converter converts a battery voltage into a driving voltage under control of the controller. A color LED backlight includes first, second and third color LED arrays connected in parallel, which are operated by the driving voltage. An FSC generator generates first, second and third color PWM signals according to an internal sawtooth voltage and a dimming voltage. A 3-channel current source generates first, second and third driving currents under control of the controller, and on/off switches paths of the first, second and third driving currents flowing through the first, second and third color LED arrays according to the first, second and third color PWM signals generated from the FSC generator, thereby adjusting luminance of the first, second and third color LED arrays of the color LED backlight.
摘要:
An apparatus for transferring serial data (e.g., a serial interface using a single wire) generally includes a detector configured to detect a first level time period and a second level time period of an input signal, and a computing unit configured to compute a duty or duty cycle of the input signal and generate an output signal based on the duty or duty cycle.