Abstract:
In some embodiments, an apparatus includes a quadrature amplitude modulation (QAM) optical modulator which includes a first phase modulator (PM), a second PM, a tunable optical coupler (TOC), and an optical combiner (OC). The TOC is configured to split a light wave at an adjustable power splitting ratio to produce a first split light wave and a second split light wave. The first PM is configured to modulate the first split light wave in response to a first multi-level electrical signal to produce a first modulated light wave. The second PM is configured to modulate the second split light wave in response to a second multi-level electrical signal to produce a second modulated light wave. The OC is then configured to combine the first modulated light wave and the second modulated light wave to generate a QAM optical signal.
Abstract:
In some embodiments, an apparatus includes an optical transmitter module that can be electrically coupled to an electrical serializer/deserializer and a controller. The optical transmitter module can include an electrical detector that can receive an in-band signal. The electrical detector can send to the controller a first power error signal and a second power error signal based on the in-band signal. The controller can send a correction control signal to the electrical serializer/deserializer based on the first power error signal and the second power error signal such that the electrical serializer/deserializer sends a pre-emphasized signal to the optical transmitter module based on the correction control signal. In such embodiments, the first power error signal, the second power signal and the correction control signal are out-of-band signals.
Abstract:
A system is configured to determine a first power level of a first signal output from a first modulator, and determine a second power level of a second signal output from a second modulator. The first signal may include a first optical signal associated with a particular polarization orientation, and the second signal may include a second optical signal associated with the particular polarization orientation. The system is configured to determine a relationship between the first power level and the second power level, and to set, based on the relationship between the first power level and the second power level, a reverse bias voltage associated with the first modulator, where the reverse bias voltage may be used to control the first power level of the first signal.
Abstract:
Techniques are described for determining, with a first optical node, a correction factor indicative of an amount of optical power loss that a Raman amplifier in a second optical node causes in an optical signal having a first wavelength that is transmitted by the first optical node and received by the second optical node, transmitting, with the first optical node to the second optical node, information, based on the determined correction factor, that is to be used for determining a gain of the Raman amplifier, and transmitting, with the first optical node to the second optical node, an optical signal having a second wavelength that is to be amplified by the Raman amplifier.
Abstract:
Techniques are described for determining, with a first optical node, a correction factor indicative of an amount of optical power loss that a Raman amplifier in a second optical node causes in an optical signal having a first wavelength that is transmitted by the first optical node and received by the second optical node, transmitting, with the first optical node to the second optical node, information, based on the determined correction factor, that is to be used for determining a gain of the Raman amplifier, and transmitting, with the first optical node to the second optical node, an optical signal having a second wavelength that is to be amplified by the Raman amplifier.
Abstract:
In some embodiments, an apparatus includes an optical transmitter module that can be electrically coupled to an electrical serializer/deserializer and a controller. The optical transmitter module can include an electrical detector that can receive an in-band signal. The electrical detector can send to the controller a first power error signal and a second power error signal based on the in-band signal. The controller can send a correction control signal to the electrical serializer/deserializer based on the first power error signal and the second power error signal such that the electrical serializer/deserializer sends a pre-emphasized signal to the optical transmitter module based on the correction control signal. In such embodiments, the first power error signal, the second power signal and the correction control signal are out-of-band signals.
Abstract:
In some embodiments, an apparatus includes a quadrature amplitude modulation (QAM) optical modulator which includes a first phase modulator (PM), a second PM, a tunable optical coupler (TOC), and an optical combiner (OC). The TOC is configured to split a light wave at an adjustable power splitting ratio to produce a first split light wave and a second split light wave. The first PM is configured to modulate the first split light wave in response to a first multi-level electrical signal to produce a first modulated light wave. The second PM is configured to modulate the second split light wave in response to a second multi-level electrical signal to produce a second modulated light wave. The OC is then configured to combine the first modulated light wave and the second modulated light wave to generate a QAM optical signal.
Abstract:
An optical device may include a modulator. The modulator may receive an optical signal. The modulator may modulate the optical signal to include a first channel and a second channel. The modulator may modulate the optical signal based on a training pattern associated with detecting a skew. The modulator may cause the first channel to interfere with the second channel. The modulator may perform a power measurement on the first channel and the second channel. The modulator may determine the skew based on the power measurement and the training pattern. The modulator may time delay the first channel or the second channel to align the skew based on the skew.
Abstract:
In some embodiments, an apparatus includes an optical transmitter module that can be electrically coupled to an electrical serializer/deserializer and a controller. The optical transmitter module can include an electrical detector that can receive an in-band signal. The electrical detector can send to the controller a first power error signal and a second power error signal based on the in-band signal. The controller can send a correction control signal to the electrical serializer/deserializer based on the first power error signal and the second power error signal such that the electrical serializer/deserializer sends a pre-emphasized signal to the optical transmitter module based on the correction control signal. In such embodiments, the first power error signal, the second power signal and the correction control signal are out-of-band signals.
Abstract:
An optical device may include a transmitter to provide an optical signal via a set of channels and a modulator. The optical device may include two or more tributary modulators to modulate the set of channels with a training pattern. The optical device may include a set of optics to alter a first channel relative to a second channel of the set of channels. The optical device may include a detector to determine an optical power measurement of the optical signal after the first channel is altered relative to the second channel. The optical device may include a controller to generate a control signal to adjust a power balance associated with the optical signal based on the optical power measurement. The optical device may include a controller to provide the control signal to a tributary modulator to alter a modulation of the optical signal.