Abstract:
An access network is described in which a centralized controller provides seamless end-to-end service from a core-facing edge of a service provider network through aggregation and access infrastructure out to access nodes located proximate to the subscriber devices. The controller operates to provide a central configuration point for configuring aggregation nodes (AGs) of a network of the service provider so as to provide transport services to transport traffic between access nodes (AXs) and edge routers on opposite borders of the network.
Abstract:
An access network is described in which a centralized controller provides seamless end-to-end service from a core-facing edge of a service provider network through aggregation and access infrastructure out to access nodes located proximate the subscriber devices. The controller operates to provide a central configuration point for configuring aggregation nodes (AGs) of a network of the service provider so as to provide transport services to transport traffic between access nodes (AXs) and edge routers on opposite borders of the network.
Abstract:
In one example, a method includes establishing a plurality of label switched paths (LSPs) having a common transit network device other than an ingress network device or an egress network device of any of the plurality of LSPs, and, by the transit network device along the plurality of LSPs, detecting a congestion condition on a link along the plurality of LSPs and coupled to the transit network device. The method also includes, responsive to detecting the congestion condition, and by the transit network device, selecting a subset of the plurality of LSPs to evict from the link, wherein the subset comprises less than all of the plurality of LSPs, and updating a forwarding plane of the transit network device to reroute network traffic received for the selected subset of the plurality of the LSPs for forwarding to a next hop on a bypass LSP that avoids the link.
Abstract:
An access network is described in which a centralized controller provides seamless end-to-end service from a core-facing edge of a service provider network through aggregation and access infrastructure out to access nodes located proximate to the subscriber devices. The controller operates to provide a central configuration point for configuring aggregation nodes (AGs) of a network of the service provider so as to provide transport services to transport traffic between access nodes (AXs) and edge routers on opposite borders of the network.
Abstract:
A system and method for handling critical events in service delivery gateways. Events are defined that cause a transition from a master redundancy state to a standby redundancy state in service delivery gateways and a plurality of signal-routes are stored. Each signal-route is associated with one or more of the defined events. A first defined event is detected in the first service delivery gateway and causes a transition from the first master redundancy state to the first standby redundancy state in the first service delivery gateway and a change in a first signal-route from the plurality of signal-routes in the first service delivery gateway. The change in the first signal-route is advertised and a second service delivery gateway transitions from the first standby redundancy state to the first master redundancy state.
Abstract:
Techniques of this disclosure enable loop protection for networks that utilize hop-by-hop routing, such as networks that utilize multi-protocol label switching (MPLS) label distribution and interior gateway protocol (IGP) routing. As described herein, the techniques provide protection from any small transient loops that may emerge due to link failure or other topology change events in networks that utilize hop-by-hop routing techniques.
Abstract:
In general, techniques are described for automated traffic mapping for multi-protocol label switching (MPLS) networks. A network device comprising a processor and an interface card may perform the techniques. The processor may generate an advertisement that conforms to a routing protocol. The advertisement may advertise a mapping between a network flow and a label switched path (LSP) tag. The processor may also generate a communication associating the label switched path tag with an LSP. The interface card may transmit the advertisement to a head-end label edge router that admits traffic into the LSP identified by the LSP tag. The interface card may also transmit the communication to the label edge router such that the label edge router is able to process the communication in conjunction with the advertisement to map the network flow to the LSP identified by the LSP tag.
Abstract:
Techniques are described for establishing a point-to-multipoint (P2MP) label switched path (LSP) using a branch node-initiated signaling model in which branch node to leaf (B2L) sub-LSPs are signaled and utilized to form a P2MP LSP. The techniques described herein provides a scalable solution in which the number of sub-LSPs for which the source node or any given branch node need maintain state is equal to the number of physical data flows output from that node to downstream nodes, i.e., the number of output interfaces used for the P2MP LSP by that node to output data flows to downstream nodes. As such, unlike the conventional source node-initiated model in which each node maintains state for sub-LSPs that service each of the leaf nodes downstream from the device, the size and scalability of a P2MP LSP is no longer bound to the number of leaves that are downstream from that node.
Abstract:
An access network is described in which a centralized controller provides seamless end-to-end service from a core-facing edge of a service provider network through aggregation and access infrastructure out to access nodes located proximate the subscriber devices. The controller operates to provide a central configuration point for configuring aggregation nodes (AGs) of a network of the service provider so as to provide transport services to transport traffic between access nodes (AXs) and edge routers on opposite borders of the network.
Abstract:
In general, techniques are described for automated traffic mapping for multi-protocol label switching (MPLS) networks. A network device comprising a processor and an interface card may perform the techniques. The processor may generate an advertisement that conforms to a routing protocol. The advertisement may advertise a mapping between a network flow and a label switched path (LSP) tag. The processor may also generate a communication associating the label switched path tag with an LSP. The interface card may transmit the advertisement to a head-end label edge router that admits traffic into the LSP identified by the LSP tag. The interface card may also transmit the communication to the label edge router such that the label edge router is able to process the communication in conjunction with the advertisement to map the network flow to the LSP identified by the LSP tag.