Abstract:
In one example, an edge routing device of a service provider network includes one or more network interfaces configured to send and receive packets and a processing unit configured to retrieve, from a packet received via the one or more network interfaces, priority data from an Internet protocol (IP) header of the packet, form a first tag including a first set of data in a first priority field of the first tag, wherein the first set of data represents a first portion of the priority data, form a second tag including a second set of data in a second priority field of the second tag, wherein the second set of data represents a second portion of the priority data, encapsulate the packet with the first tag and the second tag, and forward, via the one or more network interfaces, the encapsulated packet.
Abstract:
In one example, an edge routing device of a service provider network includes one or more network interfaces configured to send and receive packets and a processing unit configured to retrieve, from a packet received via the one or more network interfaces, priority data from an Internet protocol (IP) header of the packet, form a first tag including a first set of data in a first priority field of the first tag, wherein the first set of data represents a first portion of the priority data, form a second tag including a second set of data in a second priority field of the second tag, wherein the second set of data represents a second portion of the priority data, encapsulate the packet with the first tag and the second tag, and forward, via the one or more network interfaces, the encapsulated packet.
Abstract:
Techniques are described for applying double experimental (EXP) quality of service (QoS) markings to Multiprotocol Label Switching (MPLS) packets. According to the techniques, an edge router of an MPLS network is configured to map a Differentiated Services Code Point (DSCP) marking for customer traffic to at least two EXP fields of at least two different labels included in a MPLS packet encapsulating the customer traffic. In this way, the edge router may map the full DSCP marking across the first and second EXP fields to provide full resolution QoS for the customer traffic over the MPLS network. The techniques also include a core router of an MPLS network configured to identify a QoS profile for a received MPLS packet based on a combination of a first EXP field of a first label and a second EXP field of a second label included in the MPLS packet.
Abstract:
Techniques are described for applying double experimental (EXP) quality of service (QoS) markings to Multiprotocol Label Switching (MPLS) packets. According to the techniques, an edge router of an MPLS network is configured to map a Differentiated Services Code Point (DSCP) marking for customer traffic to at least two EXP fields of at least two different labels included in a MPLS packet encapsulating the customer traffic. In this way, the edge router may map the full DSCP marking across the first and second EXP fields to provide full resolution QoS for the customer traffic over the MPLS network. The techniques also include a core router of an MPLS network configured to identify a QoS profile for a received MPLS packet based on a combination of a first EXP field of a first label and a second EXP field of a second label included in the MPLS packet.