摘要:
Techniques are described for providing fast convergence in the event of a link failure in an all-active multi-homed Ethernet virtual private network. A provide edge (PE) network device may pre-configure an interface next hop and secondary next hops. The secondary next hops may be logical links to other PE network devices in the same Ethernet segment. In the event of a link failure in the interface next hop between the PE network device and a customer edge (CE) network device, the PE network device may be configured to forward data traffic to the CE network device using the secondary next hops. In the event of a link failure between the PE network device and a core network, the PE network device may be configured to send an out-of-service message to the CE network device that instructs the CE network device to stop sending traffic to the PE network device.
摘要:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
摘要:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
摘要:
The disclosed method may include (1) identifying a customer edge router that is multi-homed to a provider edge router and another provider edge router, (2) determining, by the provider edge router, that the other provider edge router has identified an Internet Protocol address of the customer edge router by way of an Address Resolution Protocol, (3) learning, by the provider edge router, the Internet Protocol address of the customer edge router from the other provider edge router, and then (4) advertising, by the provider edge router to at least one gateway of at least one other customer edge router, a route that facilitates communication with the customer edge router via the provider edge router based at least in part on the Internet Protocol address of the customer edge router. Various other methods, systems, and apparatuses are also disclosed.
摘要:
The disclosed apparatus may include (1) a database that maintains a pruned multicast distribution tree and (2) a processing unit having access to the database, wherein the processing unit (A) receives at least one type 3 Ethernet Segment Identifier (ESI) message from at least one other bridge domain on at least one other computing device, (B) determines, based at least in part on the type 3 ESI message, whether the other bridge domain on the other computing device has a root access concentrator, and then (C) populates, in response to determining whether the other bridge domain has a root access concentrator, the pruned multicast distribution tree to account for the other bridge domain such that the bridge domain on the computing device is able to determine whether to send multicast traffic to the other bridge domain. Various other apparatuses, systems, and methods are also disclosed.
摘要:
A first device may receive network traffic including a first label. The first label may be an inclusive multicast label associated with a second device. The second device may be a designated forwarder for an Ethernet segment. The first device may determine a second label based on receiving the network traffic including the first label. The second label may be used to route the network traffic to a customer edge device, via a third device, rather than the second device. The third device may be a non-designated forwarder for the Ethernet segment. The first device may provide the network traffic, including the second label, to the third device to permit the third device to provide, via the Ethernet segment, the network traffic to the customer edge device based on the second label when a failure occurs in association with the second device.
摘要:
Techniques are described to provide designated forwarder state propagation to customer edge network devices using connectivity fault management (CFM) so as to ensure that customer edge (CE) network devices are aware of a change in designated forwarder election in an Ethernet Virtual Private Network (EVPN). In one example, a method includes determining a change in designated forwarder election from a provider edge (PE) network device to another PE device; in response to the change in designated forwarder election, configuring a message including at least a client-facing interface status of the first PE device, wherein the client-facing interface status included in the message is configured as an indicator of a result of the change in designator forwarder election; and transmitting the message to the multi-homed CE device.
摘要:
A device may receive, from a first device associated with a first LAN, network traffic destined for a second LAN. The device may provide the first LAN with access to a core network. The device may not provide the second LAN with access to the core network. The device may identify, based on the network traffic, a Layer 3 address associated with a second device. The second device may be associated with the second LAN. The device may determine that the first device is categorized as a leaf device within an Ethernet Tree provided by the device. The device may determine, based on the Layer 3 address, that the second device is categorized as a leaf device within the Ethernet Tree. The device may drop the network traffic based on determining that the first device and the second device are categorized as leaf devices within the Ethernet Tree.
摘要:
A network device is configured to provide, via an Ethernet segment with a customer network, active-active multi-homing L2 virtual bridge connectivity to the customer network using an EVPN instance (EVI) and L3 routing using an IRB interface that is a L3 routing interface assigned to the EVI; to receive, from a peer PE device of the EVPN instance, an EVPN route comprising an L2-L3 binding for a customer device of the customer network and associating the L2-L3 binding with the Ethernet segment, the L2-L3 binding comprising an L2 and an L3 address assigned to the customer device, wherein the peer PE device provides, with the network device and via the Ethernet segment, active-active multi-homing L2 virtual bridge connectivity to the customer network; and to forward, via the Ethernet segment and based at least on the L2-L3 binding received from the peer PE device, an L3 packet to the customer device.
摘要:
The disclosed apparatus may include (1) a database that maintains a pruned multicast distribution tree and (2) a processing unit having access to the database, wherein the processing unit (A) receives at least one type 3 Ethernet Segment Identifier (ESI) message from at least one other bridge domain on at least one other computing device, (B) determines, based at least in part on the type 3 ESI message, whether the other bridge domain on the other computing device has a root access concentrator, and then (C) populates, in response to determining whether the other bridge domain has a root access concentrator, the pruned multicast distribution tree to account for the other bridge domain such that the bridge domain on the computing device is able to determine whether to send multicast traffic to the other bridge domain. Various other apparatuses, systems, and methods are also disclosed.