Abstract:
In some embodiments, an apparatus includes an optical transceiver which includes a rate-adaptive forward error correction (FEC) encoder and a rate-adaptive FEC decoder. The rate-adaptive FEC encoder is configured to adjust a number of a set of known symbols associated with a codeword to achieve rate adaption. A length of the codeword is fixed. The rate-adaptive FEC encoder is configured to generate the codeword based on (1) a set of information symbols including the set of known symbols and a set of data symbols, and (2) a fixed number of a set of parity symbols generated using information symbols. The rate-adaptive FEC decoder is configured to receive a set of reliability values associated with a channel word, and expand the set of reliability values to produce an expanded set of reliability values. The rate-adaptive FEC decoder is further configured to decode the expanded set of reliability values.
Abstract:
In one embodiment, a method can include receiving at an egress schedule module a request to schedule transmission of a group of cells from an ingress queue through a switch fabric of a multi-stage switch. The ingress queue can be associated with an ingress stage of the multi-stage switch. The egress schedule module can be associated with an egress stage of the multi-stage switch. The method can also include determining, in response to the request, that an egress port at the egress stage of the multi-stage switch is available to transmit the group of cells from the multi-stage switch.
Abstract:
A network device includes a main storage memory and a queue handling component. The main storage memory includes multiple memory banks which store a plurality of packets for multiple output queues. The queue handling component controls write operations to the multiple memory banks and controls read operations from the multiple memory banks, where the read operations for at least one of the multiple output queues alternates sequentially between the each of the multiple memory banks, and where the read operations and the write operations occur during a same clock period on different ones of the multiple memory banks.
Abstract:
In some embodiments, an apparatus includes an optical transceiver which includes a rate-adaptive forward error correction (FEC) encoder and a rate-adaptive FEC decoder. The rate-adaptive FEC encoder is configured to adjust a number of a set of known symbols associated with a codeword to achieve rate adaption. A length of the codeword is fixed. The rate-adaptive FEC encoder is configured to generate the codeword based on (1) a set of information symbols including the set of known symbols and a set of data symbols, and (2) a fixed number of a set of parity symbols generated using information symbols. The rate-adaptive FEC decoder is configured to receive a set of reliability values associated with a channel word, and expand the set of reliability values to produce an expanded set of reliability values. The rate-adaptive FEC decoder is further configured to decode the expanded set of reliability values.
Abstract:
A multi-chassis network device may automatically detect whether cables connected between chassis devices are correctly inserted. The device may insert, into a first data stream output from a first port of the device, control information identifying the first port. The device may receive, from a second data stream received by the first port of the device, second control information identifying a second port, at another device connected to the device via a cable. The device may determine, based on the second control information, whether the connection of the first port to the second port, via the cable, is valid and cause, when the connection of the first port to the second port is determined to not be valid, the device to output an indication that the connection is not valid or to reconfigure the device to make the connection of the first port to the second port valid.
Abstract:
First in, first out (FIFO) queues may be used to transfer data between a producer clock domain and a number of consumer clock domains. In one implementation, a control component for the FIFO queues may include a number of counters, corresponding to each of the consumer clock domains, each of the counters maintaining a count value relating to an amount of data read by the corresponding consumer clock domain. The control component may additionally include a credit deduction component coupled to the count values of the counters, the credit deduction component determining whether any of the count values is above a threshold, and in response to the determination that any of the count values is above the threshold, reducing the count value of each of the counters and issuing a write pulse signal to the producer clock domain, the write pulse signal causing the producer clock domain to perform a write operation to the FIFO queues.
Abstract:
In one embodiment, a method can include receiving at an egress schedule module a request to schedule transmission of a group of cells from an ingress queue through a switch fabric of a multi-stage switch. The ingress queue can be associated with an ingress stage of the multi-stage switch. The egress schedule module can be associated with an egress stage of the multi-stage switch. The method can also include determining, in response to the request, that an egress port at the egress stage of the multi-stage switch is available to transmit the group of cells from the multi-stage switch.
Abstract:
In some embodiments, an apparatus comprises a schedule module within a switch fabric system. At a first time, the schedule module is configured to access a list of status indicators associated with a group of egress port indicators. The list of status indicators includes a set of status indicators each of which has a value greater than a threshold. The schedule module is configured to randomly select a status indicator from the set of status indicators and configured to reduce the value of the selected status indicator. The schedule module is then configured to send the egress port indicator associated with the selected status indicator such that a data cell is sent from an egress port associated with that egress port indicator. At a second time, when the value of every status indicator from the list of status indicators is not greater than the threshold, the schedule module is configured to increase the value of every status indicator above the threshold.
Abstract:
This disclosure describes the Fast Chromatic Dispersion Estimation (FCDE) techniques which corrects for chromatic dispersion in high data rate optical communications systems such as some coherent optical communications systems. FCDE may utilize transform such as fast-Fourier transforms to estimate the chromatic dispersion. From an estimate of the chromatic dispersion, the techniques may determine filter tap coefficients for compensating the chromatic dispersion.
Abstract:
Techniques are described for determining pre-compensation parameters to compensate for signal integrity degradation along a signal path. A processor generates a first digital signal and receives a second digital signal. The second digital signal is generated from an optical-to-electrical conversion of a feedback optical signal that is generated from an electrical-to-optical conversion of an electrical signal by an optical module. The processor determines the pre-compensation parameters based on the first and second digital signals.