Abstract:
In one embodiment, a method can include receiving at an egress schedule module a request to schedule transmission of a group of cells from an ingress queue through a switch fabric of a multi-stage switch. The ingress queue can be associated with an ingress stage of the multi-stage switch. The egress schedule module can be associated with an egress stage of the multi-stage switch. The method can also include determining, in response to the request, that an egress port at the egress stage of the multi-stage switch is available to transmit the group of cells from the multi-stage switch.
Abstract:
In general, the invention is directed to techniques for reducing deadlocks that may arise when performing fabric replication. For example, as described herein, a network device includes packet replicators that each comprises a plurality of resource partitions. A replication data structure for a packet received by the network device includes packet replicator nodes that are arranged hierarchically to occupy one or more levels of the replication data structure. Each of the resource partitions in each of the plurality of packet replicators is associated with a different level of the replication data structure. The packet replicators replicate the packet according to the replication data structure, and each of the packet replicators handles the packet using the one of the resource partitions of the packet replicator that is associated with the level of the replication data structure occupied by the node that corresponds to that particular packet replicator.
Abstract:
A scheduler in a network element may include a dequeuer to dequeue packets from a set of scheduling nodes using a deficit weighted round robin process, where the dequeuer is to determine whether a subset of the set of scheduling nodes is being backpressured. The dequeuer may set a root rich most negative credits (MNC) value, associated with a root node, to a root poor MNC value, associated with the root node, and set the root poor MNC value to zero, when the subset is not being backpressured, and may set the rich MNC value to a maximum of the root poor MNC value and a root backpressured rich MNC value, associated with the subset, and set the root poor MNC value to a root backpressured poor MNC value, associated with the subset, when the subset is being backpressured.
Abstract:
A method performed by an I/O unit connected to another I/O unit in a network device. The method includes receiving a packet; segmenting the packet into a group of data blocks; storing the group of data blocks in a data memory; generating data protection information for a data block of the group of data blocks; creating a control block for the data block; storing, in a control memory, a group of data items for the control block, the group of data items including information associated with a location, of the data block, within the data memory and the data protection information for the data block; performing a data integrity check on the data block, using the data protection information, to determine whether the data block contains a data error; and outputting the data block when the data integrity check indicates that the data block does not contain a data error.
Abstract:
In one embodiment, a method can include receiving at an egress schedule module a request to schedule transmission of a group of cells from an ingress queue through a switch fabric of a multi-stage switch. The ingress queue can be associated with an ingress stage of the multi-stage switch. The egress schedule module can be associated with an egress stage of the multi-stage switch. The method can also include determining, in response to the request, that an egress port at the egress stage of the multi-stage switch is available to transmit the group of cells from the multi-stage switch.
Abstract:
A method performed by an I/O unit connected to another I/O unit in a network device. The method includes receiving a packet; segmenting the packet into a group of data blocks; storing the group of data blocks in a data memory; generating data protection information for a data block of the group of data blocks; creating a control block for the data block; storing, in a control memory, a group of data items for the control block, the group of data items including information associated with a location, of the data block, within the data memory and the data protection information for the data block; performing a data integrity check on the data block, using the data protection information, to determine whether the data block contains a data error; and outputting the data block when the data integrity check indicates that the data block does not contain a data error.