Abstract:
A robot according to an embodiment includes a first link, a second link, an actuator, and an external gear. The second link is rotatably connected to the first link. The actuator rotationally drives the second link. The external gear is connected to the actuator. The second link includes an internal gear engaged with the external gear.
Abstract:
A robot according to an embodiment includes a lower arm, an upper arm, a wrist, and an actuator that rotationally drives the wrist. The upper arm is connected to the lower arm rotatably about a first rotation axis. The wrist is connected to the upper arm rotatably about a second rotation axis perpendicular to the first rotation axis. The actuator is disposed so that a rotation axis of the actuator is perpendicular to the second rotation axis and is attached to the upper arm so as to extend in a direction of the first rotation axis.
Abstract:
A robot includes: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a balancer connected to both the rotation base and the arm unit; and a cable arranged along the arm unit outside the balancer while supported by that balancer.
Abstract:
A robot includes: a stage unit; a rotation base connected to the stage unit in a rotatable manner around a predetermined rotating axis; an arm unit connected to the rotation base and having a base end rotatable around a first rotation axis that is substantially orthogonal to the rotating axis; a first attachment unit provided to the rotation base, arranged in an outside, in a rotation radius direction, of the rotation base and nearer to the stage unit than the first rotation axis, and formed so that one part of a balancer is attached thereto; and a second attachment unit provided to the arm unit and formed so that another part of the balancer is attached thereto.
Abstract:
To enable a recovery control program to be executed quickly by a robot controller without needing to equip the robot controller with a large-capacity storage device, provided is a robot system, including a first robot controller for controlling a first robot. The first robot controller includes a posture information obtaining unit for obtaining information indicating a posture of the first robot when an anomaly occurs in the first robot. The robot system further includes a recovery control program generating unit for generating, by computing, based on the posture of the first robot, a recovery control program for changing the posture of the first robot to a given standby posture.
Abstract:
Provided is a robot further improved in safety. The robot includes at least one link which is rotatably coupled around an axis, a motor which rotates the link around the axis, a first sensor which detects a rotation state of the motor, and a second sensor which detects a rotation state of the link. The robot also includes a controller which controls the rotation of the link based on information from the first sensor. The controller determines an operation state of at least one of the first sensor and the second sensor, based on first information from the first sensor and second information from the second sensor.
Abstract:
A robot according to embodiments includes a first link, a second link, an actuator, a scissors gear, and a support part. The second link is rotatably connected to the first link. The actuator drives the second link in a rotatable manner. The scissors gear includes a main gear and a sub gear, and outputs driving force from the actuator to the second link. The support part is attached to the first link and rotatably supports the scissors gear. Furthermore, the scissors gear includes a spring that is arranged adjacent to the support part in the direction of the rotational axis of the scissors gear and applies biasing force to the main gear and the sub gear in rotational directions different from each other.