Abstract:
A robot system of the present disclosure includes a robot and a controller configured to control motion of the robot, and the controller includes: a motion mode storage unit storing a plurality of motion modes for controlling the robot to switch a motion state of the robot from a normal motion state to a special motion state when a predetermined first condition is satisfied; and a motion mode switching unit configured to switch the motion mode of the robot to another motion mode when, while a particular motion mode stored in the motion mode storage unit is in execution, a predetermined second condition for the particular motion mode is satisfied with a first condition for the particular motion mode satisfied.
Abstract:
Provided is a robot further improved in safety. The robot includes at least one link which is rotatably coupled around an axis, a motor which rotates the link around the axis, a first sensor which detects a rotation state of the motor, and a second sensor which detects a rotation state of the link. The robot also includes a controller which controls the rotation of the link based on information from the first sensor. The controller determines an operation state of at least one of the first sensor and the second sensor, based on first information from the first sensor and second information from the second sensor.
Abstract:
A robot system of the present disclosure includes: a robot including an operable working arm; a motion speed detection unit configured to detect a motion speed of the working arm; a region setting unit that sets a region with a predetermined range around the robot; a moving body detection unit configured to detect a position of the moving body other than the robot; and an abnormality determination unit configured to determine abnormality when detecting of the position of the moving body within the region, wherein the region setting unit changes the range of the region according to the motion speed of the working arm.
Abstract:
A robot system includes a first conveyor, a second conveyor, a robot, and a controller. The first conveyor conveys a plurality of kinds of workpieces. The second conveyor conveys workpiece groups each including a combination of the workpieces. The controller controls the robot, and includes a situation acquirer, a determiner, and an instructor. The situation acquirer acquires a situation in a predetermined monitor area on the first and second conveyors. The monitor area is set based on a movable range of the robot. Based on the situation, the determiner determines whether one of the workpieces on the first conveyor in the monitor area is a missing workpiece of one of the workpiece groups in the monitor area. The instructor instructs the robot to hold the one workpiece and to transfer the one workpiece from the first conveyor to the second conveyor.
Abstract:
A robot system of the present disclosure includes: a robot including an operable working arm driven by an actuator; an operation load detection unit configured to detect an operation load of the actuator; a region setting unit that sets a region with a predetermined range around the robot; a moving body detection unit configured to detect a position of a moving body other than the robot; and an abnormality determination unit that determines abnormality when detecting of the position of the moving body within the region, wherein the region setting unit changes the range of the region in accordance with the operation load of the actuator.
Abstract:
A robot system is provided, which includes a robot having an operable operation arm, an attachment detector for detecting one or more attachments, each attached to a wearing article equipped by a movable body, and a motion-control changer for changing a motion control of the robot based on a detection result detected by the attachment detector.