Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
An improved circuit board core material, and method of making the circuit board core material, is provided wherein the circuit board core material is particularly suitable for use in a circuit board. The circuit board core material comprises a laminate. The laminate comprises a prepreg layer with a first clad layer on the prepreg layer wherein the prepreg layer comprises a pocket. An electronic component is in the pocket wherein the electronic component comprises a first external termination and a second external termination. The first external termination is laminated to, and in electrical contact with, the first clad layer and said second external termination is in electrical contact with a conductor.
Abstract:
A solid electrolytic capacitor is described which comprises an anode, a dielectric on the anode and a cathode on the dielectric. A conductive coating is on the cathode wherein the conductive layer comprises an exterior surface of a first high melting point metal. An adjacent layer is provided comprising a second high melting point metal, wherein the first high melting point metal and the second high melting point metal are metallurgically bonded with a low melting point metal.
Abstract:
A solid cathode electrolytic capacitor and method of making a solid electrolytic capacitor are provided. The capacitor comprises an anode comprising an anode lead and an anode lead extension extending from the anode lead. The anode lead and anode lead extension are joined at a weld region. A dielectric is on the anode and a cathode is on the dielectric.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.
Abstract:
A solid electrolytic capacitor is described which comprises an anode, a dielectric on the anode and a cathode on the dielectric. A conductive coating is on the cathode wherein the conductive layer comprises an exterior surface of a first high melting point metal. An adjacent layer is provided comprising a second high melting point metal, wherein the first high melting point metal and the second high melting point metal are metallurgically bonded with a low melting point metal.
Abstract:
A capacitor, and method for making the capacitor, is provided with improved charging characteristics. The capacitor has an anode, a cathode comprising a conductive polymer layer and a work function modifier layer adjacent the conductive polymer layer and a dielectric layer between the anode and the cathode.