Abstract:
Provided is an image writing device including a deflector having deflective reflection surfaces for deflecting light flux emitted from a light source and a scanning imaging optical system that condenses the light flux as a light spot on a scanned surface of a latent image carrier, and performing optical scanning on the scanned surface at a constant speed, the image writing device further including: a surface detector that detects a deflective reflection surface that deflects the light flux; a storage that prestores a beam irradiation position in a sub scanning direction corresponding to each main image height on each of the deflective reflection surfaces; and a hardware processor that controls, on the basis of a beam irradiation position in the sub scanning direction corresponding to each main image height on the deflective reflection surface a light quantity of the light flux to be irradiated to the beam irradiation position.
Abstract:
An optical print head, including: a light emitting substrate which includes a light emitting element on a base; a rod lens array which focuses light emitted from the light emitting element onto an image carrier, the rod lens array having a larger linear expansion coefficient than the base of the light emitting substrate; and expansion suppressing members which are attached to both lateral surfaces of the rod lens array in a direction that is perpendicular to an optical axis direction and is a shorter direction, each of the expansion suppressing members having a smaller linear expansion coefficient than the rod lens array.
Abstract:
An optical writing device performs writing by scanning an image surface of a photoconductor with light, and includes a light source unit including a light source that emits light, a deflection unit that deflects and scans the light, an optical element unit for the light, and a housing unit that holds the light source unit, the deflection unit, and the optical element unit. The housing unit includes a vibration isolator that isolates vibration transmitted from a vibration antinode where distribution of vibration in a sub direction perpendicular to a scanning direction of the light on the image surface of the photoconductor is maximum to at least one of seat face parts for the light source unit and the optical element unit having optical sensitivity in the sub direction, in a bottom face part of the housing unit, and a rigidity enhancer that increases rigidity of the seat face part.
Abstract:
A wearable computer includes a computer, a display unit, first and second casings, temples, a holding member and an adjustment mechanism. The second casing houses the computer. The temples are respectively connected to one end and, through a connection member, the other end of the first casing in a longitudinal direction. The holding member extends downward from the connection member and holds a nose pad and a translucent member. The display unit extends downward from the first casing and to outside of an installation space of the translucent member to face one eye of a wearer. The adjustment mechanism adjusts a relative position of the display unit and the nose pad. The wearable computer is wearable with the first casing being held above the one eye by the temples, the connection member and the nose pad.
Abstract:
In an optical writing device that deflects light beams from first and second light source sections and performs scanning by first and second scanning optical systems, in reflective optical elements disposed in the optical axis direction from after the polygon mirror to before a separation mirror, a number of hold points on each of a writing start side and a writing end side in scanning is same, and in reflective optical elements disposed from after the separation mirror up to a surface to be scanned, a number of hold points on a writing start side of the first scanning optical system is same (one) with that on a writing end side of the second scanning optical system, and a number of hold points on a writing end side of the first scanning optical system is same (two) with that on a writing start side of the second scanning optical system.
Abstract:
An optical writing device includes: a deflector that deflects and scans light; optical elements; and a housing that holds the deflector and the optical element, wherein a support plate of the housing has an enclosed inner region that is substantially surrounded by a vibration suppressor and a vibration transmission blocker and supports the deflector, and the support plate also has a flat portion having a peninsular shape facing the vibration transmission blocker in the enclosed inner region, and an element holder for at least one or more of the optical elements having optical sensitivity in a vibration direction of the housing is disposed outside the enclosed inner region.
Abstract:
A scanning optical apparatus includes a light source, a deflector and an imaging optical system. The deflector deflects a beam emitted from the light source to scan a scanning surface with the beam in a main scanning direction. The imaging optical system focuses the beam on the scanning surface. The imaging optical system includes a first lens having negative power in a sub scanning direction and a second lens having positive power in the sub scanning direction, in which the sub scanning direction is parallel to the scanning surface and perpendicular to the main scanning direction. The power φ1 of the first lens, the power φ2 of the second lens and a magnification β in the sub scanning direction of the imaging optical system satisfy the conditions −1.2≤φ1/φ2≤−0.9 and −1.3≤β≤−0.8.
Abstract:
A fixing structure for fixing an optical element at a predetermined position in an optical device, the fixing structure has a plurality of first pressing members to fix the optical element at at least two positions on a surface of the optical element orthogonal to an optical axis of the optical element and a second pressing member to fix the optical element at a predetermined position on a surface of the optical element to the optical axis. A depth of pressing of the surface of the optical element by a tip of the second pressing member is larger than the depth of pressing of the surface of the optical element by the tips of the first pressing members.