Abstract:
Provided is a polymer that includes a predetermined structural unit derived from an azomethine derivative having a polymerizable group and is reversibly fluidized and non-fluidized by being irradiated with light.
Abstract:
Provided are an organic electroluminescence device which has a high luminous efficiency, a low operating voltage and a long life and which is low in a voltage rise in operation and excellent in an ageing stability and has an aptitude in production by the wet process, and a lighting equipment and a display device which are prepared by using the same.The above organic electroluminescence device is constituted from organic layers including at least a light-emitting layer which are interposed between an anode and a cathode, wherein at least one layer of the above organic layers contains a blue phosphorescent organic metal complex having a structure represented by the following Formula (1) and a compound represented by the following Formula (H1):
Abstract:
An organic electroluminescence element includes: an anode; a cathode; and a luminous layer. The luminous layer includes: a luminescent dopant having a reorganization energy of 0 eV to 0.7 eV in electron transition from a ground state (S0) to a lowest excited triplet state (T1); and a host compound having a reorganization energy of 0 eV to 0.3 eV in electron transfer reaction between a ground state (S0) and an anionic radical state (AR), and having a molecular weight within a range of 500 to 3000.
Abstract:
This invention provides an organic EL element, which can control luminescence wavelength, exhibits high luminescence efficiency, and has a prolonged emission life, and a lighting equipment and a display device. They can be realized by an organic electroluminescent element material characterized by a metal complex having a structure represented by the following general formula (A) as a partial structure.
Abstract:
This invention provides an organic EL element, which can control luminescence wavelength, exhibits high luminescence efficiency, and has a prolonged emission life, and a lighting equipment and a display device. They can be realized by an organic electroluminescent element material characterized by a metal complex having a structure represented by the following general formula (A) as a partial structure.
Abstract:
An interaction impact evaluation method that enable highly accurate prediction of properties or a search for new substitute materials having desired properties is provided. According to the present invention, a step for selecting a kind of interaction due to a plurality of element materials, and a step for evaluating the degree to which the selected interaction is involved with the property of the composite material are performed to evaluate the impact of interaction with respect to the property of a composite material including a plurality of types of element materials.
Abstract:
Disclosed is a compound containing a specific structure having an azomethine part, the compound being reversibly fluidized and non-fluidized by being irradiated with light.
Abstract:
An organic electroluminescent element includes an organic layer including a compound having an electron donor moiety and an electron acceptor moiety in a single molecule. The compound satisfies the following expression: (ΔEH+ΔEL)≧2.0 eV. ΔEH represents a difference in energy level between a highest energy occupied molecular orbital spreading over the electron donor moiety and a highest energy occupied molecular orbital spreading over the electron acceptor moiety, and ΔEL represents a difference in energy level between a lowest energy unoccupied molecular orbital spreading over the electron donor moiety and a lowest energy unoccupied molecular orbital spreading over the electron acceptor moiety, determined by molecular orbital calculation. A highest energy occupied molecular orbital of the compound has an energy level of −5.2 eV or more. A lowest energy unoccupied molecular orbital of the compound has an energy level of −1.2 eV or less.
Abstract:
A wet process using an organic solvent is used to produce an organic EL element, which has high light emission efficiency, a long light emission life and a small color change when continuously driven, an illuminating device and a display device are provided. Especially, an organic EL element which emits white light and can be manufactured at low cost is provided.