Abstract:
The invention relates to a lower eyelid treatment device (1), which comprises a skin treatment structure (3) having a protruding shape which is able to perform a periodical first movement through a stationary reference point (P) in a skin treatment zone (8) of the device. Said periodical first movement occurs in the reference point (P) at a frequency within a frequency range between 0.5 Hz and 3.0 Hz. Said periodical first movement is a local movement of the protruding shape through the reference point (P), at a velocity in the reference point (P) within a velocity range between 0.005 m/sec and 0.05 m/sec, in a single local movement direction (12) in the reference point (P) being transverse to a local protrusion direction of the protruding shape. In this manner, the device provides a specific massage of eye bags of a treated person. The massage results in lymphatic drainage of fluid, which undesirably has built up in the skin of the lower eyelid area (52), towards (14) lymph nodes near the ear. Thus, the device provides a quickly and easily usable solution for reliably and effectively stimulating the reduction of eye bags.
Abstract:
The invention provides a treatment device (100) for fractional laser-based treatment. The treatment device comprises a treatment generator (80) comprising a treatment laser (20) and a laser scanning system (30). The laser scanning system comprises at least one movable deflection element and is configured and arranged for scanning laser light across an emission window (70) towards skin tissue (110) from a plurality of locations (74) in the emission window by moving the at least one deflection element relative to the emission window, whereby, in use, laser-based lesions (120) are generated inside the skin tissue. The treatment device also comprises a controller (60) for generating a predefined disposition of lesions (120) in the skin tissue by emitting laser light via selected ones of the plurality of locations in the emission window while the treatment device is moved relative to the skin surface (105). The controller is configured for generating an area disposition of the lesions by scanning the laser light across the emission window using the laser scanning system and deflecting laser light into the skin tissue via the plurality of locations while the treatment device is moved relative to the skin surface, whereas in the line treatment mode the controller is configured to generate a line disposition of the lesions inside the skin tissue from a single predefined location of the emission window by maintaining the at least one deflection element in a stationary position relative to the emission window while the treatment device is moved relative to the skin surface.
Abstract:
The invention provides a treatment device (100) for fractional laser-based skin treatment. The treatment device comprises an emission window (70) comprising an elongated area (75) and a plurality of predefined locations (74) in said elongated area (75), wherein the predefined locations (74) are arranged in an elongated array which extends along a treatment axis (72) of the window (70), and wherein each predefined location (74) in the array is located at a distance from the treatment axis (72), seen in a direction perpendicular to the treatment axis (72), which is smaller than 25% of a maximum distance between two predefined locations (74) in the array, seen in a direction parallel to the treatment axis (72). The treatment device further comprises a treatment generator (80) comprising a treatment laser (20) for emitting laser light (21) towards skin tissue (110) from said plurality of predefined locations (74) in the emission window (70) for generating, in use, laser-based lesions (120) inside the skin tissue (110). The treatment device further comprises a motion sensor (90) for sensing motion of the treatment device relative to the skin surface (105) and a controller (60) for determining a non-zero sequence of at least one of the plurality of predefined locations in the emission window from which laser light is consecutively emitted in dependence on the sensed motion. The controller is configured to activate the treatment generator to generate said non-zero sequence when the sensed motion of the treatment device relative to the skin surface only has a component in a direction parallel to the treatment axis.