ULTRASOUND IMAGING SYSTEM WITH DEPTH-DEPENDENT TRANSMIT FOCUS

    公开(公告)号:US20190298309A1

    公开(公告)日:2019-10-03

    申请号:US16365775

    申请日:2019-03-27

    Abstract: An ultrasound system includes a transducer array having three or more rows of transducer elements extending in the azimuth dimension and located adjacent to each other in the elevation dimension. The rows have different mechanical foci in the elevation dimension, with an inner row elevationally focused in the near field and outer rows elevationally focused in the far field. When the user is imaging a subject in the near field, the system beamformer transmits with the inner row with a near field elevation focus. When imaging in the far field a plurality of rows elevationally focused in the far field are used for transmission. When the user is imaging in the mid-range, the beamformer uses both the inner row and the plurality of outer rows to provide an extended mid-range elevation focus.

    ULTRASOUND IMAGING SYSTEM PROVIDING NEEDLE INSERTION GUIDANCE

    公开(公告)号:US20210038320A1

    公开(公告)日:2021-02-11

    申请号:US16963859

    申请日:2019-01-15

    Abstract: An ultrasound imaging system for needle insertion guidance uses a curved array transducer to scan an image field with unsteered beams as a needle is inserted into the image field. Due to differences in the angle of incidence between the radially directed beams and the needle, echoes will return most strongly from only a section of the needle. This section is identified in an image, and the angle of incidence producing the strongest returns is identified. Beams with this optimal angle of incidence are then steered in parallel from the curved array transducer to produce the best needle image. The steep steering angles of some of the steered beams can give rise to side lobe clutter artifacts, which can be identified and removed from the image data using dual apodization processing of the image data.

    ULTRASOUND IMAGING SYSTEM WITH TRANSMIT APODIZATION

    公开(公告)号:US20200025920A1

    公开(公告)日:2020-01-23

    申请号:US16516303

    申请日:2019-07-19

    Abstract: A digital transmit beamformer for an ultrasound system has a waveform sample memory which stores sequences of samples of different pulse transmit waveforms of differing pulse widths. The memory is shared by a plurality of transmit channels, each of which can access its own selected sample sequence, independent of the selections by other channels. Waveform sample readout by the channels occurs substantially simultaneously during a transmit event, producing a transmit beam from a transmit aperture with different pulse waveforms applied to different elements of the transmit aperture. Higher energy waveforms with wider pulse widths are applied to central elements of the aperture and lower energy waveforms with narrower pulse widths are applied to lateral elements of the aperture to produce an apodized transmit beam.

    ULTRASOUND IMAGING SYSTEM WITH TRANSMIT APODIZATION

    公开(公告)号:US20220416910A1

    公开(公告)日:2022-12-29

    申请号:US17898782

    申请日:2022-08-30

    Abstract: A digital transmit beamformer for an ultrasound system has a waveform sample memory which stores sequences of samples of different pulse transmit waveforms of differing pulse widths. The memory is shared by a plurality of transmit channels, each of which can access its own selected sample sequence, independent of the selections by other channels. Waveform sample readout by the channels occurs substantially simultaneously during a transmit event, producing a transmit beam from a transmit aperture with different pulse waveforms applied to different elements of the transmit aperture. Higher energy waveforms with wider pulse widths are applied to central elements of the aperture and lower energy waveforms with narrower pulse widths are applied to lateral elements of the aperture to produce an apodized transmit beam.

    Ultrasound imaging system with transmit apodization

    公开(公告)号:US11480674B2

    公开(公告)日:2022-10-25

    申请号:US16516303

    申请日:2019-07-19

    Abstract: A digital transmit beamformer for an ultrasound system has a waveform sample memory which stores sequences of samples of different pulse transmit waveforms of differing pulse widths. The memory is shared by a plurality of transmit channels, each of which can access its own selected sample sequence, independent of the selections by other channels. Waveform sample readout by the channels occurs substantially simultaneously during a transmit event, producing a transmit beam from a transmit aperture with different pulse waveforms applied to different elements of the transmit aperture. Higher energy waveforms with wider pulse widths are applied to central elements of the aperture and lower energy waveforms with narrower pulse widths are applied to lateral elements of the aperture to produce an apodized transmit beam.

    ULTRASONIC IMAGING BY SPARSE SAMPLING AND ASSOCIATED DEVICES, SYSTEMS, AND METHODS

    公开(公告)号:US20210219952A1

    公开(公告)日:2021-07-22

    申请号:US17053945

    申请日:2019-05-07

    Abstract: Systems, devices, and methods for ultrasonic imaging by sparse sampling are provided. In one embodiment, an ultrasound imaging system comprises an array of ultrasound transducer elements, electronic circuitry in communication with the array of ultrasound transducer elements and configured to select a first receive aperture of the array comprising a plurality of contiguous ultrasound transducer elements and at least one non-contiguous ultrasound transducer element, and a beamformer in communication with the electronic circuitry. Each ultrasound transducer element of the first receive aperture is configured to receive reflected ultrasound echoes and generate an electrical signal representative of imaging data. The beamformer is configured to receive the electrical signals generated by the first receive aperture and apply different weight to the electrical signals generated by the contiguous ultrasound transducer elements and the electrical signal generated by the at least one non-contiguous ultrasound transducer element.

Patent Agency Ranking