Abstract:
A digital image (40) comprises pixels with intensities relating to different energy levels. A method for processing the digital image (40) comprises the steps of: receiving first image data (42a) and second image data (42b) of the digital image (40), the first image data (42a) encoding a first energy level and the second image data (42b) encoding a second energy level; determining a regression model (44) from the first image data (42a) and the second image data (42b), the regression model (44) establishing a correlation between intensities of pixels of the first image data (42a) with intensities of pixels of the second image data (42b); and calculating residual mode image data (46) from the first image data (42a) and the second image data (42b), such that a pixel of the residual mode image data (46) has an intensity based on the difference of an intensity of the second image data (42b) at the pixel and a correlated intensity of the pixel of the first image data (42a), the correlated intensity determinate by applying the regression model to the intensity of pixel of the first image data (42a).
Abstract:
The present invention relates to mammography. In particular, the present invention relates to a method and a corresponding system for individually monitoring a compression force in an apparatus for mammographic examination for personalized compression guidance. In order to provide a personalized guidance for the compression of the breast in a first step (S1a, S1b, S1c) a breast contact area (A) between a breast under examination and a compression plate (3) or a support plate (15) is determined. In a next step (S5) a compression force limit is determined based on the breast contact area (A). Then, in a further step (S9a, S9b, S9c) an output signal (5) representative of the relation between the breast contact area (A) and the compression force limit is provided to a user such that the user may decide whether to complete or to continue the application of compression force.
Abstract:
A system and related method for retrieving, for a first image structure (S1) in an initial image (IG1), a corresponding image structure (S2) in a second image (IG2). The system accepts as input a location of the first structure (S1) in the initial image (IG1) along with an additional structure property such as spectral information to so reduce ambiguity.
Abstract:
The present invention relates to a medical imaging device for generating a breast parameter map in order to improve mammographic images. The medical imaging device comprises an image unit, a raster unit, a definition unit, a generating unit, and a provision unit. The image unit is configured to provide image data of a breast. The raster unit is configured to provide a predefined raster with several subportions, which is preferably predefined based on a predefined coordinate system relative to predefined body characteristics of a standard breast. The definition unit is configured to define several subvolumes in the breast according to the subportions of the raster, preferably by identification of body characteristics in the image data for adaption of the raster subportions to the image data. The generating unit is configured to generate a breast parameter per breast subvolume. The provision unit is configured to provide a breast parameter per breast subvolume in a breast parameter map, wherein each breast parameter is allocated to its breast subvolume.
Abstract:
The present invention relates to mammography. In particular, the present invention relates to a method and a corresponding system for individually monitoring a compression force in an apparatus for mammographic examination for personalized compression guidance. In order to provide a personalized guidance for the compression of the breast in a first step (S1a, S1b, S1c) a breast contact area (A) between a breast under examination and a compression plate (3) or a support plate (15) is determined. In a next step (S5) a compression force limit is determined based on the breast contact area (A). Then, in a further step (S9a, S9b, S9c) an output signal (5) representative of the relation between the breast contact area (A) and the compression force limit is provided to a user such that the user may decide whether to complete or to continue the application of compression force.
Abstract:
The present invention relates to an apparatus for characterization of a feature in a body part. It is describe to provide (210) tomosynthesis medical data comprising a plurality of images of the body part, wherein the plurality of images comprise image data associated with a plurality of rays of radiation that have passed through the body part, wherein the image data comprises spectral data associated with at least two photon energy levels of the plurality of rays of radiation, wherein the medical data comprises data of the feature. A delineated boundary of the feature is determined (220). At least one material composition of the body part inside the delineated boundary is determined (240) comprising a function of the spectral data inside the delineated boundary. The feature is characterised (250) as a function of the at least one material composition inside the delineated boundary of the feature. Data representative of the feature is output (260).
Abstract:
The present invention relates to an apparatus for displaying medical image data of a body part. It is described to provide (12) medical data of a body part, and subsets of medical image data from the medical data are determined (14). A plurality of measures of information content for the subsets of medical image data is determined (16), wherein a measure of information content is associated with a subset of medical image data. A plurality of weighting factors for the subsets of medical image data is determined (18), wherein a weighting factor is associated with a subset of medical image data and the weighting factor is determined as a function of the measure of information content for that subset of medical image data. Data representative of the subsets of medical image data is output (22) as a function of the plurality of weighting factors.
Abstract:
The present invention relates to X-ray imaging technology as well as image post-processing. Particularly, the present invention relates to a method for computer aided detection of structures in X-ray images as well as an X-ray system. A computer aided detection algorithm visibly determines tissue structures in X-ray image information and subsequently matches the shape of a determined tissue structure with a library of known tissue structures for characterizing the type of determined tissue structure. The determination of a tissue structure and thus the characterization of the type of the tissue structure may be enhanced when employing also spectral information, in particular energy information of the acquired X-ray image. Accordingly, a method (70,80,90) for computer aided detection of structures and X-ray images is provided, comprising the steps of obtaining (72) spectral X-ray image information of an object, wherein the spectral X-ray image information constitutes at least one X-ray image, detecting (74) a tissue structure of interest in the X-ray image by employing a computer aided detection algorithm, wherein detecting a tissue structure of interest in the X-ray image comprises the computer aided detection algorithm being adapted to evaluate the X-ray image for tissue structure shape and compare the tissue structure shape with a plurality of pre-determined tissue structure shapes and wherein the computer aided detection algorithm is adapted to evaluate spectral information of the X-ray image for detecting the tissue structure of interest.
Abstract:
An X-ray system (2) for acquiring an image of an object has an X-ray detector (8), which is segmented into a plurality of neighboring detector tiles. In particular, the image can be a two-dimensional projection image but also a three-dimensional volume of the object reconstructed from a tomosynthesis acquisition. An X-ray detector moving mechanism (18) is adapted for moving the X-ray detector (8) at least between a first X-ray detector position and a second X-ray detector position during operation of the X-ray system. An X-ray source (4), a collimator (22) and the X-ray detector (8) of the X-ray system (2) are adapted for acquiring a plurality of partial X-ray images through the adjacent detector tiles while irradiating the object with X-ray beams from a plurality of tomographic angles α. The processing unit is adapted for generating a two-dimension image of the object and/or for reconstructing a three-dimensional volume of the object from the acquired partial images.
Abstract:
An image processing apparatus (IP) comprising an input port (IN) for receiving projection data through respective 3D locations in an imaging region, said projection date collected in a scan operation by an imaging apparatus (IM). An image segment generator (IGS) of said apparatus (IP) is configured to generate, based on said projection data, a first image segment for said 3D locations. A visualizer (VIZ) configured to effect displaying said first image segment on a display device before or whilst the image apparatus collects projection data for a different 3D location.