HYBRID X-RAY AND OPTICAL DETECTOR

    公开(公告)号:US20210396891A1

    公开(公告)日:2021-12-23

    申请号:US17296581

    申请日:2019-11-21

    Abstract: The present invention relates to an imaging detector. In order to provide a hybrid X-ray and optical detector with enhanced optical imaging capabilities and a simple design, an imaging detector is provided for capturing optical imaging data and X-ray imaging data. The imaging detector comprises a substrate, a photosensitive sensor, an X-ray scintillator, and an array of optical component arrangements. The photosensitive sensor comprises sensor pixels distributed across the imaging detector. The X-ray scintillator is configured to convert energy of incident X-ray radiation into optical photons. Each optical component arrangement comprises at least one optical component configured for directing incident optical radiation towards the photosensitive sensor. The sensor pixels comprise optical pixels, each coupled with a respective optical component arrangement to receive the incident optical radiation, thereby generating the optical imaging data. The sensor pixels comprise X-ray pixels coupled with the X-ray scintillator to receive the converted optical photons, thereby generating the X-ray imaging data.

    NAVIGATION SUPPORT
    4.
    发明公开
    NAVIGATION SUPPORT 审中-公开

    公开(公告)号:US20240065773A1

    公开(公告)日:2024-02-29

    申请号:US18270533

    申请日:2021-12-28

    Abstract: The present invention relates to guidance during a medical intervention. In order to provide an improved navigation support with a facilitated setup, a system (10) for navigation support is provided. An image data input (12) receives a plurality of acquired 2D X-ray images of a subject's body from different angles. A set of markers, which are visible in X-ray images and which are detectable by a navigation system, is assigned to the subject. A marker detecting arrangement (16) is provided that detects a current spatial location of the markers assigned to the subject. A data processor (14) reconstructs a 3D volume of the subject based on the plurality of 2D X-ray images. At least a part of the markers is arranged outside the volume covered by the reconstructed 3D volume of the subject, while the markers are visible in the 2D X-ray images. The data processor (14) identifies the markers in the 2D X-ray images based on image data of the plurality of 2D X-ray images outside the 3D volume and determines a spatial location of the markers in relation to the 3D volume of the subject. The data processor (14) also registers the reconstructed 3D volume of the subject to a current spatial position of the subject based on the detected current spatial location of the markers and the determined spatial location of the markers in relation to the 3D volume of the subject. An output interface (18) provides the registered reconstructed 3D volume for navigation.

Patent Agency Ranking