Abstract:
The invention relates to a labeling apparatus (1) for labeling structures of an object shown in an object image. A probability map providing unit (3) provides a probability map, the probability map indicating for different labels, which are indicative of different structures of the object, and for different positions in the probability map the probability that the respective structure, which is indicated by the respective label, is present at the respective position, wherein the probability depends on the position in the probability map. The probability map is mapped to the object image by a mapping unit (4), wherein a label assigning unit (5) assigns to a provided contour, which represents a structure in the object image, a label based on the mapped probability map. This allows automatically labeling structures of the object, which are indicated by provided contours in the object image, with relatively low computational efforts.
Abstract:
The invention relates to a labeling apparatus (1) for labeling structures of an object shown in an object image. A probability map providing unit (3) provides a probability map, the probability map indicating for different labels, which are indicative of different structures of the object, and for different positions in the probability map the probability that the respective structure, which is indicated by the respective label, is present at the respective position, wherein the probability depends on the position in the probability map. The probability map is mapped to the object image by a mapping unit (4), wherein a label assigning unit (5) assigns to a provided contour, which represents a structure in the object image, a label based on the mapped probability map. This allows automatically labeling structures of the object, which are indicated by provided contours in the object image, with relatively low computational efforts.
Abstract:
A magnetic resonance (MR) system (10) and method (100) maintains geometric alignment of diagnostic scans during an examination of a patient (12). At least one processor (40) is programmed to, in response to repositioning of the patient (12) during the examination, perform an updated survey scan of the patient (12). A scan completed during the examination is selected as a template scan. A transformation map between the template scan and the updated survey scan is determined using a registration algorithm, and the transformation map is applied to a scan geometry of a remaining diagnostic scan of the examination. A scan plan for the remaining diagnostic scan is generated using the updated scan geometry. The remaining diagnostic scan is performed according to the scan plan.