Abstract:
The present disclosure may disclose a multi stage safety injection device and a passive safety injection system having the same, including a safety injection tank formed to contain coolant to be injected into a reactor vessel by a gravitational head of water when an accident occurs in which the pressure or water level of the reactor vessel is decreased, a pressure balance line connected to the reactor vessel and safety injection tank to form a pressure balance state between the reactor vessel and the safety injection tank, a safety injection line connected to a lower end portion of the safety injection tank and the reactor vessel to inject coolant to the reactor vessel in a pressure balance state between the reactor vessel and the safety injection tank, and a flow control line extended from the safety injection line to an inner portion of the safety injection tank, and provided with safety injection ports into which coolant is injected at predetermined heights, respectively, to reduce the flow rate of coolant injected into the reactor vessel step by step according to the water level reduction of the safety injection tank, in order to inject coolant to the reactor vessel at multi stages.
Abstract:
The present invention relates to a passive heat removal system which circulates cooling fluid via a main water supply line, connected to the lower inlet of a steam generator, and a main steam pipe, connected to the top outlet of the steam generator, to the steam generator, in order to remove sensible heat of a reactor coolant system and residual heat of a core, the passive heat removal system comprising: supplementary equipment for receiving surplus cooling fluid or supplying supplementary cooling fluid in order to maintain the flow rate of the cooling fluid within a predetermined range, wherein the supplementary equipment comprises: a supplementary tank, installed at a predetermined height between the lower inlet and the top outlet of the steam generator, for receiving the surplus cooling fluid or supplying the supplementary cooling fluid, passively, depending on the flow rate of the cooling fluid; a first connection pipe, connected to the main steam pipe and the supplementary tank, for forming a flow path to allow the cooling fluid, exhausted to the main steam pipe from the steam generator, to flow to the supplementary tank; and a second connection pipe connected to the supplementary tank and the main water supply pipe for forming a supply flow path of the supplementary cooling fluid supplied from the supplementary tank.
Abstract:
The present invention discloses a passive cooling system of a containment building, to which a plate-type heat exchanger is applied. A passive cooling system of a containment building comprises: a containment building; a plate-type heat exchanger provided to at least one of the inside and the outside of the containment building and comprising channels respectively provided to the both sides of a plate so as to be arranged dividedly from each other such that the plate-type heat exchanger carries out mutual heat exchange between the internal atmosphere of the containment building and a heat exchange fluid while maintaining a pressure boundary; and a pipe connected to the plate-type heat exchanger by penetrating the containment building so as to form the path of the internal atmosphere of the containment building or the heat exchange fluid.
Abstract:
The present invention discloses a nuclear reactor coolant pump that does not rely on an electric motor, but is operated by means of driving force generated inside a nuclear power plant, so a to be capable of maintaining the safety of the nuclear reactor when the nuclear reactor is operating normally and also in the event of an accident in the nuclear reactor. The nuclear reactor coolant pump comprises: a pump impeller rotatably installed in a first fluid passage of a nuclear reactor coolant system to circulate a first fluid inside the nuclear reactor coolant system; a drive unit receiving steam from a steam generator to generate driving force to rotate the pump impeller, and rotating about the same rotating shaft as the pump impeller to transfer the generated driving force to the pump impeller; and a steam supplying unit forming a passage between the steam generator and the drive unit to supply at least a portion of the steam released from the steam generator to the drive unit.
Abstract:
A passive safety injection system includes a containment, a reactor installed in the containment, safety injection tanks installed in the containment, a safety injection line between the reactor or a reactor coolant system and each of the safety injection tanks to guide water, which is stored in the safety injection tank, into the reactor when a water level in the reactor is reduced due to a loss of coolant accident, and a pressure balance line between the reactor or the reactor coolant system and the safety injection tank to guide high-temperature steam from the reactor into the safety injection tank upon the loss of coolant accident. The safety injection line has an orifice and a check valve thereon, and the pressure balance line has an orifice and isolation valves thereon. The water in the safety injection tank stably flows into the reactor for many hours.
Abstract:
The present invention provides passive safety equipment, comprising: a cooling part formed to cool a first fluid, which is emitted from a reactor coolant system or a steam generator, and a second fluid in a housing; and a circulation induction sprayer which is formed to spray the first fluid emitted from the reactor coolant system or the steam generator into the cooling part, has at least part thereof open to the inside of the housing such that the second fluid flows thereinto according to a drop in pressure caused by the spraying of the first fluid, and sprays the second fluid with the inflown first fluid.
Abstract:
The present disclosure may disclose a multi stage safety injection device, including a safety injection tank formed to contain coolant to be injected into a reactor vessel by a gravitational head of water when an accident occurs in which the pressure or water level of the reactor vessel is decreased, a pressure balance line connected to the reactor vessel and safety injection tank to form a pressure balance between the reactor vessel and the safety injection tank, and a set of safety injection lines connected to the safety injection tank and the reactor vessel to inject coolant to the reactor vessel in a pressure balance state between the reactor vessel and the safety injection tank, and connected to the safety injection tank with different heights to reduce a flow rate of coolant injected into the reactor vessel step by step according to the water level reduction of the safety injection tank in order to inject coolant to the reactor vessel at multi stages.
Abstract:
A passive safety system includes a containment, a reactor in the containment, a plurality of safety injection tanks connected with the reactor and having water and nitrogen gas to supply water thereof into the reactor through a safety injection line communicating to the first safety injection line upon a loss of coolant accident, a plurality of core makeup tanks connected with the reactor to supply water thereof into the reactor through a second safety injection line communicating to a safety injection line upon the loss of coolant accident, and a plurality of passive residual heat removal systems to remove residual heat from the reactor upon the loss of coolant accident or a non-loss of coolant accident. The water in each of the safety injection tank is stably supplied to the reactor for many hours by a differential head resulting from gravity or gas pressure.