Abstract:
A heat exchanger for a steam generator according to one embodiment of the present invention comprises a plate and channels formed on the plate by an photo-chemical etching method, wherein the channels comprise: a primary heat transmission section formed in a manner of having a bent or curved flow path so as to be extended longer than the length at which one side and the other side are connected in a straight line; and a flow path resistance section, formed having a smaller width than the width of the channels formed on the primary heat transmission section and being connected to the one side of the primary transmission section in a manner of having a bent or curved flow path so as to be extended longer than the length at which an inlet and an outlet are connected in a straight line.
Abstract:
The present invention relates to a passive heat removal system which circulates cooling fluid via a main water supply line, connected to the lower inlet of a steam generator, and a main steam pipe, connected to the top outlet of the steam generator, to the steam generator, in order to remove sensible heat of a reactor coolant system and residual heat of a core, the passive heat removal system comprising: supplementary equipment for receiving surplus cooling fluid or supplying supplementary cooling fluid in order to maintain the flow rate of the cooling fluid within a predetermined range, wherein the supplementary equipment comprises: a supplementary tank, installed at a predetermined height between the lower inlet and the top outlet of the steam generator, for receiving the surplus cooling fluid or supplying the supplementary cooling fluid, passively, depending on the flow rate of the cooling fluid; a first connection pipe, connected to the main steam pipe and the supplementary tank, for forming a flow path to allow the cooling fluid, exhausted to the main steam pipe from the steam generator, to flow to the supplementary tank; and a second connection pipe connected to the supplementary tank and the main water supply pipe for forming a supply flow path of the supplementary cooling fluid supplied from the supplementary tank.
Abstract:
The present invention provides a facility for reducing radioactive material comprising: a cooling water storage unit installed inside a containment and formed to store cooling water; a boundary unit forming a boundary of radioactive material inside the containment and surrounding a reactor coolant system installed inside the containment to prevent a radioactive material from releasing from the reactor coolant system or a pipe connected with the reactor coolant system to the containment; a connecting pipe connected with an inner space of the boundary unit and the cooling water storage unit to guide a flow of a fluid caused by a pressure difference between the boundary unit and the cooling water storage unit from the boundary unit to the cooling water storage unit; and a sparging unit disposed to be submerged in the cooling water stored in the cooling water storage unit and connected with the connecting pipe to sparge the fluid that has passed through the connecting pipe and the radioactive material contained in the fluid to the cooling water storage unit.
Abstract:
A heat exchanger includes a first flow path member including a first plate having a first flow path portion providing a plurality of flow paths through which a first fluid flows, and a first bonding plate diffusion-bonded to the first plate to cover the first flow path portion; and a second flow path member including a second plate having a second flow path portion providing a plurality of flow paths through which a second fluid for exchanging heat with the first fluid flows. The first flow path member and the second flow path member are diffusion-bonded to each other.
Abstract:
A heat exchanger includes a body having an inlet header through which a fluid is introduced, and an outlet header through which the fluid is discharged; and one or more plates accommodated in the body and provided with flow path modules providing flow paths for the fluid introduced through the inlet header to flow to the outlet header. The heat exchanger further includes at least one flow path adjuster each having at least a portion thereof accommodated in the body and being movable or rotatable to open or close a part or all of the flow paths or to change directions of the flow paths so that a flow of the fluid is adjusted.
Abstract:
A heat exchanger for a steam generator according to one embodiment of the present invention comprises a plate and channels formed on the plate by an photo-chemical etching method, wherein the channels comprise: a primary heat transmission section formed in a manner of having a bent or curved flow path so as to be extended longer than the length at which one side and the other side are connected in a straight line; and a flow path resistance section, formed having a smaller width than the width of the channels formed on the primary heat transmission section and being connected to the one side of the primary transmission section in a manner of having a bent or curved flow path so as to be extended longer than the length at which an inlet and an outlet are connected in a straight line.
Abstract:
The present disclosure may disclose a multi stage safety injection device and a passive safety injection system having the same, including a safety injection tank formed to contain coolant to be injected into a reactor vessel by a gravitational head of water when an accident occurs in which the pressure or water level of the reactor vessel is decreased, a pressure balance line connected to the reactor vessel and safety injection tank to form a pressure balance state between the reactor vessel and the safety injection tank, a safety injection line connected to a lower end portion of the safety injection tank and the reactor vessel to inject coolant to the reactor vessel in a pressure balance state between the reactor vessel and the safety injection tank, and a flow control line extended from the safety injection line to an inner portion of the safety injection tank, and provided with safety injection ports into which coolant is injected at predetermined heights, respectively, to reduce the flow rate of coolant injected into the reactor vessel step by step according to the water level reduction of the safety injection tank, in order to inject coolant to the reactor vessel at multi stages.
Abstract:
Disclosed is a heat exchanger for a passive residual heat removal system, which improves heat transfer efficiency by expanding a heat transfer area. A heat exchange tube includes a first member connected to a steam pipe through which steam generated from a steam generator of a nuclear reactor circulates, and a second member connected to both of the first member and a feed water pipe used to supply water to the steam generator provided in the nuclear reactor, and the first member has the shape different from that of the second member, thereby expanding the heat transfer area so that the heat transfer efficiency is improved.
Abstract:
Disclosed is a nuclear power plant which drives a Stirling engine by means of heat generated in nuclear power plant safety systems during an accident, uses the resulting power directly or generates electric power so as to supply the power to the safety systems, and thus can improve economic efficiency as well as the reliability of safety systems, such as a passive safety system, by operating the safety systems without an emergency diesel generator or external electric power.
Abstract:
The present disclosure relates to a passive safety system which uses a heat exchanger together with a thermoelectric element, and a nuclear power plant comprising the same. Disclosed are a passive safety system and a nuclear power plant comprising the same, the passive safety system comprising: a heat exchanger; a thermoelectric element; and a fan unit. The heat exchanger is formed at a space inside or outside a sealed housing, and in the heat exchanger, atmosphere is introduced and heat exchange is carried out in order to lower the pressure or temperature of the atmosphere inside the housing if an accident occurs in a reactor coolant system or a secondary system disposed inside the housing. The thermoelectric element is disposed in the heat exchanger, and when a cooling fluid, for performing heat exchange with the atmosphere, performs heat exchange with the atmosphere, the thermoelectric element is configured to generate electricity due to a temperature difference between the atmosphere and the cooling fluid. The fan unit is connected to the thermoelectric element via an electricity path so as to receive electricity generated by the thermoelectric element, and is configured to increase the flow rate of the atmosphere or the cooling fluid which passes through the heat exchanger such that the heat exchange of the atmosphere and the cooling fluid can be smoothly carried out.