Abstract:
The present invention discloses a nuclear reactor coolant pump that does not rely on an electric motor, but is operated by means of driving force generated inside a nuclear power plant, so a to be capable of maintaining the safety of the nuclear reactor when the nuclear reactor is operating normally and also in the event of an accident in the nuclear reactor. The nuclear reactor coolant pump comprises: a pump impeller rotatably installed in a first fluid passage of a nuclear reactor coolant system to circulate a first fluid inside the nuclear reactor coolant system; a drive unit receiving steam from a steam generator to generate driving force to rotate the pump impeller, and rotating about the same rotating shaft as the pump impeller to transfer the generated driving force to the pump impeller; and a steam supplying unit forming a passage between the steam generator and the drive unit to supply at least a portion of the steam released from the steam generator to the drive unit.
Abstract:
Provided is a passive containment spray system including: a spray coolant storage unit that communicates with a containment accommodating a reactor vessel and maintains equilibrium of pressure between the spray coolant storage unit and the containment; a spray pipe that is installed within the containment in such a manner that when an accident occurs, a coolant supplied from the spray coolant storage unit is sprayed into the containment through the spray pipe due to an increase in pressure within the containment; and a connection pipe one end of which is inserted into the spray coolant storage unit in such a manner as to provide a flow path along which the coolant flows and the other end of which is connected to the spray pipe in such a manner that the coolant is passively supplied to the spray pipe through the connection pipe therein.
Abstract:
The present invention relates to a passive heat removal system which circulates cooling fluid via a main water supply line, connected to the lower inlet of a steam generator, and a main steam pipe, connected to the top outlet of the steam generator, to the steam generator, in order to remove sensible heat of a reactor coolant system and residual heat of a core, the passive heat removal system comprising: supplementary equipment for receiving surplus cooling fluid or supplying supplementary cooling fluid in order to maintain the flow rate of the cooling fluid within a predetermined range, wherein the supplementary equipment comprises: a supplementary tank, installed at a predetermined height between the lower inlet and the top outlet of the steam generator, for receiving the surplus cooling fluid or supplying the supplementary cooling fluid, passively, depending on the flow rate of the cooling fluid; a first connection pipe, connected to the main steam pipe and the supplementary tank, for forming a flow path to allow the cooling fluid, exhausted to the main steam pipe from the steam generator, to flow to the supplementary tank; and a second connection pipe connected to the supplementary tank and the main water supply pipe for forming a supply flow path of the supplementary cooling fluid supplied from the supplementary tank.
Abstract:
The present invention provides a facility for reducing radioactive material comprising: a cooling water storage unit installed inside a containment and formed to store cooling water; a boundary unit forming a boundary of radioactive material inside the containment and surrounding a reactor coolant system installed inside the containment to prevent a radioactive material from releasing from the reactor coolant system or a pipe connected with the reactor coolant system to the containment; a connecting pipe connected with an inner space of the boundary unit and the cooling water storage unit to guide a flow of a fluid caused by a pressure difference between the boundary unit and the cooling water storage unit from the boundary unit to the cooling water storage unit; and a sparging unit disposed to be submerged in the cooling water stored in the cooling water storage unit and connected with the connecting pipe to sparge the fluid that has passed through the connecting pipe and the radioactive material contained in the fluid to the cooling water storage unit.
Abstract:
The present disclosure provides a stopped cooling system including: a steam line connecting portion connected to a steam line so as to receive cooling water through the steam line connected to an outlet of a steam generator; a stopped cooling heat exchanger for receiving cooling water that enters the stopped cooling system through the steam line connecting portion, and discharging same through a passage of the heat exchanger; a stopped cooling pump activated to perform stopped cooling of the nuclear reactor upon normal stoppage of the nuclear reactor after primary cooling of the nuclear reactor cooling system or when an accident occurs, and for forming a circulating flow of cooling water that circulates between the steam generator and the stopped cooling heat exchanger; and a water supplying pipe connecting portion connected to the heat exchanger passage and a water supplying pipe, which is connected to the inlet of the steam generator, so as to supply the cooling water cooled in the stopped cooling heat exchanger to the steam generator through the water supplying pipe.
Abstract:
The present invention discloses a passive cooling system of a containment building, to which a plate-type heat exchanger is applied. A passive cooling system of a containment building comprises: a containment building; a plate-type heat exchanger provided to at least one of the inside and the outside of the containment building and comprising channels respectively provided to the both sides of a plate so as to be arranged dividedly from each other such that the plate-type heat exchanger carries out mutual heat exchange between the internal atmosphere of the containment building and a heat exchange fluid while maintaining a pressure boundary; and a pipe connected to the plate-type heat exchanger by penetrating the containment building so as to form the path of the internal atmosphere of the containment building or the heat exchange fluid.
Abstract:
The present invention provides a passive residual heat removal system and an atomic power plant comprising the same, the passive heat removal system comprising: a plate-type heat exchanger for causing heat exchange between a primary system fluid or a secondary system fluid which, in order to remove sensible heat from an atomic reactor cooling material system and residual heat from a reactor core, has received the sensible heat and the residual heat, and a cooling fluid which has been introduced from outside of a containment unit; and circulation piping for connecting the atomic reactor cooling material system to the plate-type heat exchanger, thereby forming a circulation channel of the primary system fluid, or connecting a steam generator, which is arranged at the boundary between the primary and secondary systems, to the plate-type heat exchanger, thereby forming a circulation channel of the secondary system fluid.
Abstract:
The present invention provides passive safety equipment, comprising: a cooling part formed to cool a first fluid, which is emitted from a reactor coolant system or a steam generator, and a second fluid in a housing; and a circulation induction sprayer which is formed to spray the first fluid emitted from the reactor coolant system or the steam generator into the cooling part, has at least part thereof open to the inside of the housing such that the second fluid flows thereinto according to a drop in pressure caused by the spraying of the first fluid, and sprays the second fluid with the inflown first fluid.
Abstract:
The present disclosure provides a cooling system of an emergency cooling tank, which enables long-term cooling without refilling cooling water, in case of the change in a quantity of heat transferred to the emergency cooling tank according to a lapse of time upon an occurrence of an accident of a nuclear reactor, and a nuclear power plant having the same. The emergency cooling tank cooling system includes an emergency cooling tank configured to store cooling water therein, the cooling water receiving heat, transferred from a nuclear reactor or a containment, when an accident occurs in the nuclear reactor, a heat exchanging device installed to be exposed to an outside of the emergency cooling tank to operate in air, and configured to externally emit heat by way of a heat exchange between fluid in the emergency cooling tank and the air such that the operation of the emergency cooling tank is continued even without refilling the cooling water, and an opening and closing unit installed at an upper portion of the emergency cooling tank to be located higher than a water level of the cooling water, and configured to be open by a flow of the fluid generated by an evaporation of the cooling water, the flow being formed due to a pressure difference from external air at pressure higher than a preset pressure, such that some of the fluid is externally emitted when a heat load exceeding a cooling capacity of the emergency cooling tank is transferred.