摘要:
Provided are reduced acylated graphene oxide as an electrode active material and a method for preparing the same. By the method for preparing reduced acylated graphene oxide according to the present invention, a negative electrode active material for a lithium secondary battery having stable activity and a high battery capacity may be prepared with a simple and low-cost process. In addition, the active material prepared by the preparation method has low resistance, a high battery capacity, and improved rate-limiting characteristics while having stable cycle characteristics.
摘要:
The present invention relates to a cathode for a metal-air battery, a method for manufacturing the same, and a metal-air battery including the same. The cathode comprises a needle-shaped core including two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome, or a cobalt oxide; and a flake-shaped shell including an oxide containing two or more species of metals selected from the group consisting of nickel, cobalt, manganese, zinc, iron, copper, and chrome or a cobalt oxide. As such, the core-shell structure may lead to a reduction in the charge voltage of the metal-air battery as well as the taking of the good capacity characteristics of the transition metal oxide. Further, according to the present invention, the cathode for a metal-air battery may be produced without adding carbon or binder.
摘要:
This invention relates to an electrode structure including a porous electrode that simultaneously performs the functions both of a bipolar plate and of a felt electrode and has a pattern layer or a mesh layer serving as a flow path on the surface thereof, a method of manufacturing the same, and a redox flow battery stack configuration for decreasing shunt current.
摘要:
The present invention relates to a cathode catalyst for a metal-air battery, a method for manufacturing the same, and a metal-air battery comprising the same. More specifically, the present invention relates to a cathode catalyst for a metal-air battery, a method for manufacturing the same, and a metal-air battery comprising the same having an improved storage capacity for charging/discharging and an increased charge-discharge cycle lifetime. The cathode catalyst is characterized by having a layered perovskite structure, and including lanthanum and nickel oxides. The cathode catalyst including the layered perovskite is used for manufacturing a cathode for a metal-air battery, and a metal-air battery is provided using the same. As a result, the charge-discharge polarisation of the metal-air battery is decreased, the storage capacity is increased, and the charge-discharge cycle lifetime can be improved.