Abstract:
The present invention relates to a redox flow battery, and is to provide a redox flow battery having high battery potential and high energy efficiency and providing a stable charge-discharge performance. The present invention provides a redox flow battery including: a stack arranged to separate a negative electrode unit and a positive electrode unit with respect to a separator; pumps configured to supply electrolytes including polythiophene to the stack; and tanks storing the polythiophene.
Abstract:
Disclosed is a method for preparing a carbide-derived carbon-based anode active material. The method includes preparing carbide-derived carbon, and expanding pores of the carbide-derived carbon. Here, expanding of pores is performed as an activation process of heating the prepared carbide-derived carbon in the air. The pores formed inside the carbide-derived carbon can be expanded during the activation process in the preparation of the carbide-derived carbon-based anode active material. In addition, by applying the carbide-derived carbon to an anode active material, lithium secondary battery having improved charge-discharge efficiency can be prepared.
Abstract:
The present invention relates to a cell for felt electrode characterization which analyzes a characteristic of a felt electrode used in a redox flow battery. According to the present invention, the cell for felt electrode characterization can accurately analyze an electrical characteristic of the felt electrode by adjusting contact strength applied to the working electrode to be constant by adjusting the thickness of the first support that supports one side of the working electrode.