Abstract:
Disclosed is a flow-type energy storage device having an improved flow of fluid. The flow-type energy storage device stores electricity using a fluidic material, and includes a reaction region in which charge-discharge reaction of electricity is performed by the fluidic material, wherein the reaction region has an octagonal cross-section. The shape of the reaction region is controlled to thus improve the flowability of the fluidic material, thereby providing a flow-type energy storage device that has almost constant electrical properties even when a charging and discharging cycle is repeatedly performed. Further, the structures of an inlet and an outlet are not complicated and a separate part for controlling the flow of fluid is not used in the device, and accordingly, additional costs are not incurred during a process of manufacturing the flow-type energy storage device.
Abstract:
Disclosed is a method for preparing a carbide-derived carbon-based anode active material. The method includes preparing carbide-derived carbon, and expanding pores of the carbide-derived carbon. Here, expanding of pores is performed as an activation process of heating the prepared carbide-derived carbon in the air. The pores formed inside the carbide-derived carbon can be expanded during the activation process in the preparation of the carbide-derived carbon-based anode active material. In addition, by applying the carbide-derived carbon to an anode active material, lithium secondary battery having improved charge-discharge efficiency can be prepared.
Abstract:
Disclosed is a method for preparing a metal catalyst having improved yield of alcohols. The method for preparing a metal catalyst for the production of alcohol from synthesis gas includes forming a metal catalyst; and irradiating the metal catalyst with gamma rays. The metal catalyst has improved yield of alcohols by stabilizing the metal catalyst through gamma ray irradiation to inhibit generation of hydrocarbons in catalytic reaction with synthesis gas.