Abstract:
An optical element includes a multicore optical fiber, the multicore optical fiber including an inner core and at least one peripheral core arranged around the inner core and having an effective refractive index different from that of the inner core, and an optical fiber grating formed at the multicore optical fiber to cause an optical signal to be coupled between different cores among the inner core and the at least one peripheral core. The optical element allows a signal of a specific wavelength to be dropped added from an optical signal. Since the optical element may be fabricated easily, designed in a small size and mass-produced reproducibly at low costs, the optical element may be advantageously utilized for an optical communication network such as a wavelength division multiplexing network, an ultra-high speed optical communication system, an optical sensor system or the like.
Abstract:
A transparent planar heating film includes metal nanoparticles that are disposed on at least a portion of a transparent adhesive film; and a transparent electrode that is completely covered by the transparent adhesive film and has a conductive surface that is laminated to and in direct contact with the metal nanoparticles via the transparent adhesive film. The heating temperature of the transparent planar heating film is a maximum of at least two times higher at the same power consumption than that of conventional planar heating films. Both the transparent adhesive film and the transparent electrode may be flexible so that the transparent planar heating film is flexible. In the transparent planar heating film, the metal nanoparticles may be bonded to desired locations on the conductive surface of the transparent electrode enabling selective heating.
Abstract:
An optical element includes a multicore optical fiber, the multicore optical fiber including an inner core and at least one peripheral core arranged around the inner core and having an effective refractive index different from that of the inner core, and an optical fiber grating formed at the multicore optical fiber to cause an optical signal to be coupled between different cores among the inner core and the at least one peripheral core. The optical element allows a signal of a specific wavelength to be dropped added from an optical signal. Since the optical element may be fabricated easily, designed in a small size and mass-produced reproducibly at low costs, the optical element may be advantageously utilized for an optical communication network such as a wavelength division multiplexing network, an ultra-high speed optical communication system, an optical sensor system or the like.
Abstract:
A method of manufacturing a perovskite multilayered structure includes providing a substrate, forming a first perovskite layer on the substrate, forming a second perovskite layer by a reaction between the halogen compounds and at least one of the metal halides, the metal oxides, or the metal sulfides.
Abstract:
Embodiments relate to a dual Brillouin distributed optical fiber sensing system and a sensing method using Brillouin scattering that detects an event area in which an event occurred quickly by simultaneously measuring multiple correlation points located in an optical fiber under test by using a pump signal modulated with a pulsed gating signal and a continuous wave probe signal, and then precisely measures the corresponding event area by using the probe signal modulated with the pulsed gating signal and the pump signal.