摘要:
An electrophotographic photoreceptor to be used in an image forming apparatus having a charge providing means by contacting a charging member to an electrophotographic photoreceptor is disclosed. The photoreceptor has at least an interlayer, a charge generation layer and a charge transfer layer each provided on an electroconductive substrate, and the interlayer has a thickness of from 5 to 25 μm and the charge transfer layer has a thickness of from 5 to 20 μm. An image forming apparatus, image forming method and cartridge for the method are also disclosed.
摘要:
An electrophotographic photoreceptor to be used in an image forming apparatus having a charge providing means by contacting a charging member to an electrophotographic photoreceptor is disclosed. The photoreceptor has at least an interlayer, a charge generation layer and a charge transfer layer each provided on an electroconductive substrate, and the interlayer has a thickness of from 5 to 25 μm and the charge transfer layer has a thickness of from 5 to 20 μm. An image forming apparatus, image forming method and cartridge for the method are also disclosed.
摘要:
An image forming apparatus for enabling an image forming which is stable for a long time, by using a charging method in which the amount of generated ozone or nitrogen oxides is reduced and consumed electric power is low. An image forming method includes: a charging section for charging a photoreceptor by contacting on the photoreceptor; an exposure section for forming a static latent image on the photoreceptor by an exposure; a developing section for developing a toner image on the static latent image by a toner having a toner particle which uses a binder resin and a colorant as a component, in which a total quantity of a volatile material measured by a headspace method is 350 ppm or less; and a transfer section for transferring the toner image on a transfer material.
摘要:
An image forming apparatus for enabling an image forming which is stable for a long time, by using a charging method in which the amount of generated ozone or nitrogen oxides is reduced and consumed electric power is low. An image forming method includes: a charging section for charging a photoreceptor by contacting on the photoreceptor; an exposure section for forming a static latent image on the photoreceptor by an exposure; a developing section for developing a toner image on the static latent image by a toner having a toner particle which uses a binder resin and a colorant as a component, in which a total quantity of a volatile material measured by a headspace method is 350 ppm or less; and a transfer section for transferring the toner image on a transfer material.
摘要:
An electrophotographic photoreceptor is disclosed. The photoreceptor has an interlayer between an electroconductive substrate and a photosensitive layer wherein the interlayer contains a particle and has a light absorbance of not more than 0.25 per micrometer of thickness at a wavelength of 1,000 nm. An image forming apparatus and a processing cartridge employing the photoreceptor are also disclosed.
摘要:
Disclosed is an electrophotographic photoreceptor comprising a conductive support and provided thereon an intermediate layer, a carrier generation layer containing a carrier generation material and a carrier transportation layer containing a carrier transportation material, wherein said carrier generation layer contains a first perylene compound represented by Formula A and a second perylene compound represented by Formula B as said carrier generation material: ##STR1## wherein Z represents a substituted or unsubstituted divalent aromatic hydrocarbon group or a substituted or unsubstituted divalent heterocyclic group; and R represents an alkyl group, an aralkyl group, a hydroxyalkyl group, an alkoxyalkyl group, an aromatic hydrocarbon group or a heterocyclic group; ##STR2##
摘要:
An electrophotographic photoreceptor having an interlayer between an electroconductive support and a photoreceptive layer, wherein the interlayer contains an N-type semiconductive particle and a binder and a Benard cell is formed in the interlayer.
摘要:
Disclosed is an image forming method using an electrophotographic photoreceptor comprising the steps of:(1) charging the electrophotographic photoreceptor, wherein said electrophotographic photoreceptor comprising a conductive support and provided thereon, a carrier generation layer and a carrier transportation layer, said carrier generation layer comprising a carrier generation material represented by formula 1 or 2 and having X-ray diffraction pattern having peaks at 6.3.degree..+-.0.2.degree., 12.4.degree..+-.0.2.degree., 25.3.degree..+-.0.2.degree. and 27.1.degree..+-.0.2.degree. in Bragg angle (2.theta.) when using Cu-K.alpha. ray as a X-ray radiation source in which said peak of 12.4.degree..+-.0.2.degree. has a maximum intensity and has a half width of 0.65.degree. or more; no peak being present at 11.5.degree..+-.0.2.degree.,(2) imagewise exposing the charged photoreceptor for an exposure time of 1.times.10.sup.-4 to 3.times.10.sup.-2 seconds,(3) developing the imagewise exposed photoreceptor to form an image, and(4) transferring the formed image to an image receiving material: ##STR1##
摘要:
An organic photoreceptor having a photosensitive layer, an electric conductive support, and a protective layer is disclosed, in which the protective layer comprises a composition produced by reacting tin oxide particles an acryloyl or methacryloyl group on their surface with a compound having an acryloyl or methacryloyl group. A production method of the same, an image forming apparatus and a process cartridge using the same are also disclosed.
摘要:
An organic photoreceptor comprising a photosensitive layer on a conductive substrate and a protective layer on the photosensitive layer, wherein the protective layer is a surface layer prepared via reaction curing of a compound having a radical polymerizable, curable functional group using a polymerization initiators and the content of the polymerization initiator detected in the photosensitive layer is at most 5,000 ppm.