摘要:
Hollow particles for use in various types of assay devices are provided. Due to their hollow or voided structure, the particles may exhibit a variety of beneficial properties. For instance, hollow particles are generally lightweight, and thus, relatively inexpensive in comparison to other types of particles. Hollow particles may also form a stable system without requiring refrigeration or rotation. In addition, hollow particles may possess enhanced light diffraction capabilities, which may be particularly beneficial in certain types of assay devices, e.g., diffraction-based assay devices.
摘要:
Hollow particles for use in various types of assay devices are provided. Due to their hollow or voided structure, the particles may exhibit a variety of beneficial properties. For instance, hollow particles are generally lightweight, and thus, relatively inexpensive in comparison to other types of particles. Hollow particles may also form a stable system without requiring refrigeration or rotation. In addition, hollow particles may possess enhanced light diffraction capabilities, which may be particularly beneficial in certain types of assay devices, e.g., diffraction-based assay devices.
摘要:
Hollow particles for use in various types of assay devices are provided. Due to their hollow or voided structure, the particles may exhibit a variety of beneficial properties. For instance, hollow particles are generally lightweight, and thus, relatively inexpensive in comparison to other types of particles. Hollow particles may also form a stable system without requiring refrigeration or rotation. In addition, hollow particles may possess enhanced light diffraction capabilities, which may be particularly beneficial in certain types of assay devices, e.g., diffraction-based assay devices.
摘要:
The present invention provides an inexpensive and sensitive system and method for detecting analytes present in a medium. The system comprises a diffraction enhancing element, such as functionalized microspheres, which are modified such that they are capable of binding with a target analyte. Additionally, the system comprises a polymer film, which may include a metal coating, upon which is printed a specific, predetermined pattern of a analyte-specific receptors. Finally, the system includes a wicking agent which permits the system to be a single step system which avoids the necessity of any additional rinsing steps. Upon attachment of a target analyte to select areas of the polymer film, either directly or with the diffraction enhancing element, diffraction of transmitted and/or reflected light occurs via the physical dimensions and defined, precise placement of the analyte. A diffraction image, such as a hologram, is produced which can be easily seen with the eye or, optionally, with a sensing device.
摘要:
An enhanced diffraction based biosensor system and method are provided for detecting an analyte of interest in a test medium. The system incorporates at least one additional detection tag substance with the analyte of interest, the tag emitting a measurable parameter that is different from optical diffraction characteristics of the analyte. The biosensor may be a “fluoroptical” system wherein the detection tag is a fluorescence emitting substance, including fluorescent-labeled diffraction enhancing elements. The enhanced diffraction biosensor system may determine the presence of analytes in biological fluids both qualitatively and quantitatively.