Abstract:
The present invention provides voltage supplier for supplying an internal voltage with optimized drivability required for internal operation. The voltage supplier of a semiconductor memory device includes: an internal voltage detection means for detecting a voltage level of an internal voltage; a clock oscillation means for outputting a charge pumping clock signal; an internal voltage control means for controlling the clock oscillation means to be performed selectively in accordance with a data access mode or a non-data access mode; and a charge pumping means for outputting the internal voltage required for internal operation by pumping charges in response to the charge pumping clock signal.
Abstract:
A voltage generator for use in a semiconductor memory device includes an output voltage controller for generating a bias voltage using a reference voltage of which a voltage level is half of a core voltage level. Pull-up/pull-down driving signals are output by generating a voltage which is higher or lower than the reference voltage by a threshold voltage. An output driver generates a bit line precharge voltage in response to the pull-up driving signal or the pull-down driving signal. Drive controllers interrupt off-leakage current of the output driver. One drive controller is disposed between the output driver and a core voltage terminal and another drive controller is between the output driver and a ground voltage terminal.
Abstract:
A voltage generator includes a bias signal generator generating first to fourth bias signals using a reference voltage, the first to fourth bias signals having different voltage levels. A driving signal generator receives the first and third bias signals to generate a pull-up signal in response to a voltage level of an output terminal and receiving the second and fourth bias signals to generate a pull-down signal in response to a voltage level of the output terminal. A voltage driver pulls up and pulls down a voltage level of the output terminal in response to the respective pull-up and pull-down signals. An auxiliary driving controller disables the pull-up signal when the voltage level of the output terminal is greater than that of the reference voltage and the pull-down signal when the voltage level of the output terminal is less than that of the reference voltage.
Abstract:
The present invention provides voltage supplier for supplying an internal voltage with optimized drivability required for internal operation. The voltage supplier of a semiconductor memory device includes: an internal voltage detection means for detecting a voltage level of an internal voltage; a clock oscillation means for outputting a charge pumping clock signal; an internal voltage control means for controlling the clock oscillation means to be performed selectively in accordance with a data access mode or a non-data access mode; and a charge pumping means for outputting the internal voltage required for internal operation by pumping charges in response to the charge pumping clock signal.
Abstract:
A voltage generator includes a bias signal generator generating first to fourth bias signals using a reference voltage, the first to fourth bias signals having different voltage levels. A driving signal generator receives the first and third bias signals to generate a pull-up signal in response to a voltage level of an output terminal and receiving the second and fourth bias signals to generate a pull-down signal in response to a voltage level of the output terminal. A voltage driver pulls up and pulls down a voltage level of the output terminal in response to the respective pull-up and pull-down signals. An auxiliary driving controller disables the pull-up signal when the voltage level of the output terminal is greater than that of the reference voltage and the pull-down signal when the voltage level of the output terminal is less than that of the reference voltage.
Abstract:
A semiconductor memory device includes: a self refresh request signal generation unit which receives a self refresh signal for generating a base periodic signal, a plurality of divided signals and a self refresh request signal; an internal voltage generation control signal generation unit for generating an internal voltage generation control signal in response to the plurality of divided signals; and an internal voltage generation unit for generating an internal voltage in response to the internal voltage generation control signal.
Abstract:
A semiconductor integrated circuit includes a semiconductor chip, a plurality of first through-chip vias formed vertically through the semiconductor chip and configured to operate as an interface for a first power supply, and a first common conductive layer provided over the semiconductor chip and coupling the plurality of first through-chip vias to each other in a horizontal direction.
Abstract:
The present invention provides voltage supplier for supplying an internal voltage with optimized drivability required for internal operation. The voltage supplier of a semiconductor memory device includes: an internal voltage detection means for detecting a voltage level of an internal voltage; a clock oscillation means for outputting a charge pumping clock signal; an internal voltage control means for controlling the clock oscillation means to be performed selectively in accordance with a data access mode or a non-data access mode; and a charge pumping means for outputting the internal voltage required for internal operation by pumping charges in response to the charge pumping clock signal.
Abstract:
The present invention provides voltage supplier for supplying an internal voltage with optimized drivability required for internal operation. The voltage supplier of a semiconductor memory device includes: an internal voltage detection means for detecting a voltage level of an internal voltage; a clock oscillation means for outputting a charge pumping clock signal; an internal voltage control means for controlling the clock oscillation means to be performed selectively in accordance with a data access mode or a non-data access mode; and a charge pumping means for outputting the internal voltage required for internal operation by pumping charges in response to the charge pumping clock signal.
Abstract:
A semiconductor memory device includes: a self refresh request signal generation unit which receives a self refresh signal for generating a base periodic signal, a plurality of divided signals and a self refresh request signal; an internal voltage generation control signal generation unit for generating an internal voltage generation control signal in response to the plurality of divided signals; and an internal voltage generation unit for generating an internal voltage in response to the internal voltage generation control signal.