Abstract:
A semiconductor apparatus includes a multi-chip module which multi-chip module comprises a first and a second chips. The semiconductor apparatus comprises a first data line in the first chip to carry first read data; a first controller, in the first chip, configured to generate first output data on a first output data line in the first chip based on the first read data transmitted from the first data line; a first data transmitter configured to electrically connect the first output data line to the second chip.
Abstract:
An integrated circuit includes a first semiconductor chip including a plurality of first through chip vias for a first voltage and a plurality of second through chip vias for a second voltage inserted in vertical direction. A second semiconductor chip is stacked over the first semiconductor chip, and includes the plurality of first through chip vias and the plurality of second through chip vias. The plurality of first connection pads is configured to couple the first semiconductor chip to the second semiconductor chip, by coupling the corresponding first through chip vias. The plurality of second connection pads is configured to couple the first semiconductor chip to the second semiconductor chip, by coupling the corresponding second through chip vias. A first conductive line is configured to couple the plurality of first connection pads to each other, and a second conductive line is configured to couple the plurality of second connection pads to each other. An isolation layer is inserted between the first conductive line and the second conductive line.
Abstract:
A semiconductor device and a layout method of the same reduce a mismatch in a semiconductor device. The semiconductor device includes a first transistor unit providing a first path of current and a second transistor unit designed in a mirror structure to the first transistor unit and providing a second path of current. The layout of the second transistor unit has a shape identical to the first transistor unit and shifted in a first direction. The layout of the semiconductor device reduces a mismatch of the transistors occurring when masks are combined, and thereby reduces their offset.
Abstract:
A semiconductor memory device selects one of a plurality of memory cells as a dummy memory cell. The dummy memory cell is connected to a bit line that is complementary to a bit line connected to a selected memory cell. This technique advantageously compensates capacitance of the bit line. The semiconductor memory device comprises a selected memory cell connected to a first bit line and a first word line, a dummy memory cell connected to a second bit line complementary to the first bit line and a second word line, and a sense amplifier connected to the first and second bit lines and configured to read data stored in the selected memory cell by simultaneously enablement of the first and second word lines.
Abstract:
A semiconductor integrated circuit includes a semiconductor chip, a plurality of first through-chip vias formed vertically through the semiconductor chip and configured to operate as an interface for a first power supply, and a first common conductive layer provided over the semiconductor chip and coupling the plurality of first through-chip vias to each other in a horizontal direction.
Abstract:
Provided is a semiconductor device which performs a refresh operation by sequentially counting a refresh address including a main word line address, a mat address, and a sub word line address in order of the main word line address, the mat address, and the sub word line address. The semiconductor device includes a control signal generation unit configured to activate, latch, and output a toggle control signal when a delayed refresh signal is inputted at the initial stage, deactivate and output the toggle control signal after additionally counting a redundancy word line address when counting of the main word line address with respect to the mat address is completed, and then activate, latch, and output the toggle control signal when the delayed refresh signal is inputted.
Abstract:
A semiconductor memory apparatus includes a bit line sense amplifier unit and a driving voltage supply unit. The bit line sense amplifier unit senses and amplifies a signal provided from a memory cell using a pull-up driving voltage provided through a pull-up power line and a pull-down driving voltage provided through a pull-down power line. The driving voltage supply unit supplies the pull-down driving voltage having a first pull-down driving force during a first amplification period, and supplies the pull-down driving voltage having a second pull-down driving force greater than the first pull-down driving force during a second amplification period after the first amplification period.
Abstract:
An internal voltage generating circuit is utilized to perform a TDBI (Test During Burn-in) operation for a semiconductor device. The internal voltage generating circuit produces an internal voltage at a high voltage level, as an internal voltage, in not only a standby section but also in an active section in response to a test operation signal activated in a test operation. Accordingly, dropping of the internal voltage in the standby section of the test operation and failure due to open or short circuiting are prevented. As a result, reliability of the semiconductor chip, by preventing the generation of latch-up caused by breakdown of internal circuits, is assured.
Abstract:
A semiconductor memory device employs a clamp for preventing latch up. For the purpose, the semiconductor memory device includes a precharging/equalizing unit for precharging and equalizing a pair of bit lines, and a control signal generating unit for producing a control signal which controls enable and disable of the precharging/equalizing unit, wherein the control signal generating unit includes a clamping unit to clamp its source voltage to a voltage level lower than that of its bulk bias.
Abstract:
A semiconductor memory apparatus includes a row path activating unit configured to generate a line connection control signal according to a received address and active command. The semiconductor memory apparatus also includes a cell array circuit unit including an input/output line switch for connecting a first input/output line in a cell block and a second input/output line extending to the outside of the cell block. The cell array also including a bit line switch for connecting a bit line pair to each other. The input/output line switch and the bit line switch are further controlled by the line connection control signal from the row path activating unit.