摘要:
The present invention provides a local multi-resolution 3-D face-inherent model generation apparatus, including one or more 3-D facial model generation cameras for photographing a face of an object at various angles in order to obtain one or more 3-D face models, a 3-D face-inherent model generation unit for generating a 3-D face-inherent model by composing the one or more 3-D face models, a local photographing camera for photographing a local part of the face of the object, a control unit for controlling the position of the local photographing camera on the 3-D face-inherent model, and a local multi-resolution 3-D face-inherent model generation unit for generating a local multi-resolution face-inherent model by composing an image captured by the local photographing camera and the 3-D face-inherent model, a local multi-resolution 3-D face-inherent model generation using the local multi-resolution 3-D face-inherent model generation apparatus, and a skin management system.
摘要:
The present invention provides a local multi-resolution 3-D face-inherent model generation apparatus, including one or more 3-D facial model generation cameras for photographing a face of an object at various angles in order to obtain one or more 3-D face models, a 3-D face-inherent model generation unit for generating a 3-D face-inherent model by composing the one or more 3-D face models, a local photographing camera for photographing a local part of the face of the object, a control unit for controlling the position of the local photographing camera on the 3-D face-inherent model, and a local multi-resolution 3-D face-inherent model generation unit for generating a local multi-resolution face-inherent model by composing an image captured by the local photographing camera and the 3-D face-inherent model, a local multi-resolution 3-D face-inherent model generation using the local multi-resolution 3-D face-inherent model generation apparatus, and a skin management system.
摘要:
A multimedia application system uses metadata for sensory devices. The system includes: a sensory-device engine for generating a sensory device command (SDC) for controlling the sensory devices based on sensory effect information (SEI) generated to represent sensory effects by using the sensory devices depending on video contents, user preference information (UPI) of the sensory devices and device capability information (DCI) indicative of reproducing capability of the sensory devices; and a sensory-device controller for controlling sensory devices to perform sensory effect reproduction in response to the generated SDC.
摘要:
Disclosed herein is an apparatus and method for separating a foreground and a background. The apparatus includes a background model creation unit for creating a code book including a plurality of code words in order to separate the foreground and the background, and a foreground/background separation unit for separating the foreground and the background using the created code book. The method includes the steps of creating a code book including a plurality of code words in order to separate the foreground and the background, rearranging the cord words of the created code book on the basis of the number of sample data that belong to each of the code words, and separating the foreground and the background using the code book.
摘要:
An apparatus for 3D mesh compression based on quantization, includes a data analyzing unit (510) for decomposing data of an input 3D mesh model into vertices information (511) property information (512) representing property of the 3D mesh model, and connectivity information (515) between vertices constituting the 3D mesh model: and a mesh model quantizing unit (520) for producing quantized vertices and property information of the 3D mesh model by using the vertices, property and connectivity information (511, 512, 513). Further, the apparatus for 3D mesh compression based on quantization includes a decision bit encoding unit (535) for calculating a decision bit by using the quantized connectivity information and then encoding the quantized vertex information, property information and connectivity information (511, 512, 513) by using the decision bit.
摘要:
An apparatus for 3D mesh compression based on quantization, includes a data analyzing unit (510) for decomposing data of an input 3D mesh model into vertices information (511) property information (512) representing property of the 3D mesh model, and connectivity information (515) between vertices constituting the 3D mesh model: and a mesh model quantizing unit (520) for producing quantized vertices and property information of the 3D mesh model by using the vertices, property and connectivity information (511, 512, 513). Further, the apparatus for 3D mesh compression based on quantization includes a decision bit encoding unit (535) for calculating a decision bit by using the quantized connectivity information and then encoding the quantized vertex information, property information and connectivity information (511, 512, 513) by using the decision bit.
摘要:
An apparatus for compressing low-complexity 3D mesh, includes: a data analyzing unit for decomposing data of an input 3D mesh model into vertices information, property information representing property of the 3D mesh model, and connectivity information between vertices constituting the 3D mesh model; a mesh model quantizing unit for producing quantized vertices, property and connectivity information of the 3D mesh model by using the vertices, property and connectivity information; and a sharable vertex analysis unit for analyzing sharing information between shared vertices of the 3D mesh model. Further, the apparatus includes a data modulation unit for performing a circular DPCM prediction by using quantized values of the consecutive connectivity information of the 3D mesh model; and an entropy encoding unit for outputting coded data of the quantized vertices and property information, and differential pulse-code modulated connectivity information as a bitstream.
摘要:
Disclosed herein is an apparatus and method for separating a foreground and a background. The apparatus includes a background model creation unit for creating a code book including a plurality of code words in order to separate the foreground and the background, and a foreground/background separation unit for separating the foreground and the background using the created code book. The method includes the steps of creating a code book including a plurality of code words in order to separate the foreground and the background, rearranging the cord words of the created code book on the basis of the number of sample data that belong to each of the code words, and separating the foreground and the background using the code book.
摘要:
A system for managing face data includes a global face capturing unit configured to capture a global face image; and a global face data generation unit configured to obtain shape information and texture information of global face data, and generate the global face data. Further, the system includes a local face capturing unit configured to capture a plurality of local face images; and a global face posture extraction unit configured to estimate a position and a direction of the face of a captured user. Furthermore, the system includes a local capturing device posture extraction unit configured to extract posture information of the local face capturing unit; and a local face data generation unit configured to generate texture information and shape information, and generate local face data.
摘要:
A system for managing face data includes a global face capturing unit configured to capture a global face image; and a global face data generation unit configured to obtain shape information and texture information of global face data, and generate the global face data. Further, the system includes a local face capturing unit configured to capture a plurality of local face images; and a global face posture extraction unit configured to estimate a position and a direction of the face of a captured user. Furthermore, the system includes a local capturing device posture extraction unit configured to extract posture information of the local face capturing unit; and a local face data generation unit configured to generate texture information and shape information, and generate local face data.