摘要:
A method of editing color characteristics of an electronic image includes: a) receiving an original electronic image at a color editing subsystem; b) analyzing the original electronic image to identify original color characteristics and to identify a recommended set of color editing options, the recommended set of color editing options being less than a complete set of color editing options provided by the color editing subsystem; c) presenting the recommended set to a user via a user interface device; d) receiving a color editing instruction from the user interface device in response to the user selecting a corresponding color editing option from the recommended set; and e) adjusting the original color characteristics to form an adjusted electronic image having adjusted color characteristics based at least in part on the color editing instruction. An apparatus for editing color characteristics of an electronic image is also provided.
摘要:
A method of editing color characteristics of an electronic image includes: a) receiving an original electronic image at a color editing subsystem; b) analyzing the original electronic image to identify original color characteristics and to identify a recommended set of color editing options, the recommended set of color editing options being less than a complete set of color editing options provided by the color editing subsystem; c) presenting the recommended set to a user via a user interface device; d) receiving a color editing instruction from the user interface device in response to the user selecting a corresponding color editing option from the recommended set; and e) adjusting the original color characteristics to form an adjusted electronic image having adjusted color characteristics based at least in part on the color editing instruction. An apparatus for editing color characteristics of an electronic image is also provided.
摘要:
A system and method for dynamically reducing the number of choices by reordering the selectable menu options in each menu of a color adjustment tool based on image content, selections in other menus, and usage history. Color names and color modifiers are reduced and/or reordered through image analysis, with most frequently occurring colors being placed at the top of the menu and excluding less frequently used or unused colors from the menu. Adjustment adjectives are reduced by eliminating nonsensical or rare color adjustment combinations (e.g. make the grays much more colorful, make the blues yellower), and/or reordered based on usage history, either by the individual user or by aggregating over many users.
摘要:
Methods and a system for a natural language control interface are provided to enable a user to modify colors in a digital image. A textual interface is provided to select a color to be modified within the image and a direction of change for the modification. A swipe interface is provided to select a magnitude and polarity for the modification. Actions on the textual and swipe interface are converted to natural language commands which are in turn used to derive a color transformation that is applied to relevant portions of the image to yield a modified image. The modifications are displayed in real time for a user to observe as they are inputted.
摘要:
Methods and a system for a natural language control interface are provided to enable a user to modify colors in a digital image. A textual interface is provided to select a color to be modified within the image and a direction of change for the modification. A swipe interface is provided to select a magnitude and polarity for the modification. Actions on the textual and swipe interface are converted to natural language commands which are in turn used to derive a color transformation that is applied to relevant portions of the image to yield a modified image. The modifications are displayed in real time for a user to observe as they are inputted.
摘要:
Extended colorant sets are used to hide data or provide a watermark in printed images. Extended set colorants are colorants other than, and in addition to, the standard or common subtractive primary colorants: cyan, magenta, yellow and/or black. Where the extended colorant set supports a plurality of colorant recipes for rendering a given color, watermark data is used to select a colorant recipe from the plurality. As the watermark data to be encoded in the image changes state with image position, alternate colorant recipes or colorant selection functions are selected. The image is rendered based on the alternate colorant recipe selections. Watermark information is encoded in the colorant recipe or colorant selection function selection. Use of the extended colorant sets allows information to be encoded even in portions of an image having colors that do not include a neutral component.
摘要:
Provided herein are teachings directed to overcoming the problem of erroneous color reproduction on a color output device such as a color display. The teachings herein provide a method for correcting color image data input to a display device by displaying a target of color patches of known input values on the display device, and capturing an image of the target with a digital camera. This is followed by extracting camera signals from the image which corresponds to the color patches, and deriving a tone response calibration for the projector from the camera signals and the input values.
摘要:
Provided herein are teachings directed to overcoming the problem of erroneous color reproduction on a color output device such as a color display. The teachings herein provide a system and apparatus for correcting color image data input to a display device by displaying a target of color patches of known input values on the display device, and capturing an image of the target with a digital camera. This is followed by extracting camera signals from the image which correspond to the color patches, and deriving a tone response calibration for the projector from the camera signals and the input values.
摘要:
What is disclosed is a decoding method for retrieving information bits encoded in a printed image comprising the steps of first receiving an input electronic image as a scanned version of the printed image. A region of interest in the image is then extracted and, for that region, an amount of K colorant present, denoted KH; is obtained. Further, a color value is generated therefrom and the GCR used for encoding that region is determined using KH and the obtained color value. Encoded information bits are retrieved therefrom based on the determined GCR. The estimated KH is preferably evaluated conditional to a capacity signal KL and a luminance signal L. From the obtained data, values of KH, KL, and L, are derived wherein KH is estimated from a high resolution scan, and KL and L are estimated from a down-scaled image, respectively. The capacity signal KL and the luminance signal L are derived from the obtained color value. Further, the capacity signal, KL is derived by first applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution and then converting the obtained color values to CMY estimates such that KL=min(C,M,Y) Alternatively, K-capacity is derived from the amount, KL, y, comprises first converting the obtained color values to CMY estimates and applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution such that KL=min(S(C),S(M),S(Y)); wherein L is described by a linear combination of scan signals RGB, such that L=k1S(R)+k2S(G)+k3S(B). The value of KH is determined by first converting the obtained color values to CMY estimates. The estimates determine K-colorant amount at each pixel such that: K=min(C,M,Y). A suitable operator S is applied to reduce the image from scanner resolution to the watermark resolution.
摘要:
What is disclosed is a method for digital watermarking in a calibrated printing path and comprises: first receiving a pixel possessing color values from an input image; receiving a plurality of information bits to be encoded at a corresponding pixel in an output image. Then, one of at least two different GCR functions are selected where the selection is based on the state of the received information bits. The number of GCR functions to be selected from is dependent on the number of possible states of the information bits intended to be encoded at each image pixel and preferably equals the number of states of the information bits intended to be encoded at each image pixel such that the GCR spatially varies across the output image. Further, at least two GCR functions are optimized to carry information and information bits intended to be encoded within the output image are represented with a tag. CMYK values are then generated using the selected GCR function and the color values. These CMYK values are assigned to a corresponding pixel in the output image. The information bits to be encoded at a given pixel indicate the type of object to which that pixel belongs, such as: graphics, picture, text, line art, etc. The output image, when printed, exhibits the property that substantially similar colors occurring at different spatial locations in the input image are produced with substantially different CMYK combinations in the print. Preferably, a parameterized function is used for the GCR function and the encoded state sets the parameter of the function. Information bits should be redundantly encoded throughout the output image. Regions that cannot be encoded by GCR information have to be compensated for. A reference mark is applied on the output image to indicate the starting point and order of the information sequence.