摘要:
A method of forming an offset-corrected exposure image includes obtaining an initial exposure image and exposure metadata related to the initial exposure image. An intermediate offset-corrected exposure image is formed by obtaining one or more dark images associated with the initial exposure image and subtracting an averaged value of the one or more dark images from the initial exposure image. The offset-corrected exposure image is obtained by combining an offset adjustment map with the intermediate offset-corrected exposure image.
摘要:
A method of forming an offset-corrected exposure image includes obtaining an initial exposure image and exposure metadata related to the initial exposure image. An intermediate offset-corrected exposure image is formed by obtaining one or more dark images associated with the initial exposure image and subtracting an averaged value of the one or more dark images from the initial exposure image. The offset-corrected exposure image is obtained by combining an offset adjustment map with the intermediate offset-corrected exposure image.
摘要:
Embodiments of radiographic imaging systems and/or methods can operate a digital radiography detector in a multiple modes, where characteristics such as an exposure integration time and dark images (e.g., number timing integration time, etc.) for first and second modes are different. The digital radiography detector can be coupled to a memory that can store a first set of one or more calibration maps for the first mode and a second set of one or more calibration maps for the second mode and a processor. In one embodiment, the processor can form a first calibration-corrected exposure image by modifying a first exposure image from the first mode using the first set of calibration maps and a second calibration-corrected exposure image by modifying a second exposure image from the second mode using the second set of calibration maps in combination with calibration maps for the first mode.
摘要:
Embodiments of radiographic imaging systems and/or methods can operate a digital radiography detector in a multiple modes, where characteristics such as an exposure integration time and dark images (e.g., number timing integration time, etc.) for first and second modes are different. The digital radiography detector can be coupled to a memory that can store a first set of one or more calibration maps for the first mode and a second set of one or more calibration maps for the second mode and a processor. In one embodiment, the processor can form a first calibration-corrected exposure image by modifying a first exposure image from the first mode using the first set of calibration maps and a second calibration-corrected exposure image by modifying a second exposure image from the second mode using the second set of calibration maps in combination with calibration maps for the first mode.
摘要:
A method for transferring data from a digital radiography receiver panel obtains, at the receiver panel, a full-sized set of image data that comprises a diagnostic image for a patient and at least one reference image for dark signal compensation. A wireless transmission channel between the receiver panel and a separate host processor is monitored to obtain a transmission performance measure. The obtained transmission performance measure is compared against a predetermined threshold value. The response to the comparison is either (a) processing at least some portion of the full-sized set of image data at the receiver panel to form a reduced-size set of image data, then wirelessly transmitting the reduced-size set of image data to the host processor; or (b) wirelessly transmitting the full-sized set of image data from the receiver panel to the host processor.
摘要:
A system for monitoring the state of calibration of a digital x-ray detector having a solid state sensor with a plurality of pixels, a scintillating screen and at least one embedded microprocessor, the system having means for capturing a digital image and a computer operable during normal diagnostic use of the detector, in cooperation with at least one embedded microprocessor, for performing pixelwise computations on the image and calculating a misregistration metric indicative of movement of the solid state sensor relative to the scintillating screen. A defect metric indicative of abnormal properties of pixels in the solid state sensor is calculated. It is then determined whether one or both of the misregistration metric and the defect metric exceeds a respective, preselected threshold value. The user of the system is alerted to conduct a calibration of the detector when either one or both of the respective threshold values have been exceeded.
摘要:
A system for monitoring the state of calibration of a digital x-ray detector having a solid state sensor with a plurality of pixels, a scintillating screen and at least one embedded microprocessor, the system having means for capturing a digital image and a computer operable during normal diagnostic use of the detector, in cooperation with at least one embedded microprocessor, for performing pixelwise computations on the image and calculating a misregistration metric indicative of movement of the solid state sensor relative to the scintillating screen. A defect metric indicative of abnormal properties of pixels in the solid state sensor is calculated. It is then determined whether one or both of the misregistration metric and the defect metric exceeds a respective, preselected threshold value. The user of the system is alerted to conduct a calibration of the detector when either one or both of the respective threshold values have been exceeded.
摘要:
A system and method of offering photofinishing services involves receiving an exposed photographic film from a customer; developing and scanning the film to produce a digital image; displaying examples of a plurality of looks on a color display medium to a customer; receiving a selection of a preferred look from the customer; and applying the selected look to the digital image to produce a processed digital image having the preferred look.
摘要:
A method of obtaining recommendations for lowered radiation dose for a type of radiological image, executed at least in part by a computer system, obtains at least one clinical image of at least one patient, taken under a baseline set of exposure conditions, as a basis image. Processing instructions related to image simulation under one or more reduced exposure conditions are obtained. The basis image is processed according to the processing instructions to generate a set of one or more simulation images, each simulation image representative of corresponding reduced exposure conditions. One or more simulation images are displayed to one or more diagnostic practitioners and an evaluation obtained from the one or more practitioners related to at least the quality of the one or more simulation images. At least one recommended reduced exposure condition is generated and electronically stored according to the practitioner evaluation.
摘要:
In a method and system for processing a photographic image having lightness values, L*, representing one of the colorimetric values of an original scene, the photographic image is transformed. The transformed image has a gamma as a function of CIE 1976 L*, which includes a dark region having a rising slope, a light region having a falling slope, and a plateau region having a slope constantly within 5 percent of a maximum value in said plateau region. The rising slope is at least twice as large as the absolute value of the falling slope. The plateau region is between 10 L* and 30 L* wide. Gamma is a derivative of visually perceived reproduced CIE 1976 L* versus scene CIE 1976 L*. Gamma has a maximum slope between 1.5 and 2.0.
摘要翻译:在用于处理具有亮度值的摄影图像的方法和系统中,表示原始场景的色度值之一的L *,变换摄影图像。 经变换的图像具有作为CIE 1976 L *的函数的伽马,其包括具有上升斜率的暗区域,具有下降斜率的光区域和具有在所述第一区域中的最大值的5%以内的斜率的平稳区域 高原地区。 上升斜率至少是下降斜率绝对值的两倍。 平台区域在10 L *和30 L *之间。 伽玛是视觉感知再现CIE 1976 L *与场景CIE 1976 L *的衍生物。 伽玛的最大斜率在1.5到2.0之间。