摘要:
A glass composition to be softened is fed to a heating zone and is shaped continuously into a cylindrical component in a deformation zone, and the cross-sectional geometry of the component is determined. A feed device, a heating device, and a take-off device are provided, and a glass composition is supplied continuously by the feed device to the heating device, where it is softened, the component being formed from the softened glass composition by means of the take-off device under formation of a deformation zone. To produce a component with only slight deviations from the desired cross-sectional geometry and to provide a flexible apparatus suitable for this purpose, the glass composition is locally heated or cooled in at least one deformation area, which extends over only a part of the circumference of the deformation zone, as a function of a determined deviation of the cross-sectional geometry from a nominal geometry. Heating or cooling are provided, which act locally on at least one deformation area, which extends over only a part of the circumference of the deformation zone.
摘要:
According to a prior art method for producing a cylindrical component comprised of silica glass, a cylinder comprised of a softened silica glass mass is drawn in a predetermined drawing direction along a drawing axis by means of a drawing device which acts upon said cylinder. The aim of the invention is to provide a method which prevents, to the greatest possible extent, warping of the drawn cylinder and other deviations from the ideal cylinder dimensions and to prevent, to the greatest possible extent, the outer surface of the drawn cylinder from being touched. To these ends, the invention provides that the drawing device comprises a plurality of guide elements which are arranged one behind the other along the drawing axis, and which can be displaced independently of one another in a drawing direction and in a direction opposite thereto. At least two of said guide elements which maintain an engaging distance from one another are simultaneously displaced, in a frictionally engaged manner, on the cylinder in a drawing direction and with an identical drawing speed. A device suited for carrying out the inventive method comprises a feed device, a heating zone and a drawing device by means of which a cylinder is drawn along a drawing axis and in a predetermined drawing direction with a controlled drawing speed. The drawing device comprises a number of drawing elements which are arranged one behind the other along the drawing axis and which can be displaced independently of one another in a drawing direction and in a direction opposite thereto.
摘要:
In a known method for the production of a blank mold for optical fibers, a fluorine-doped SiO2 enveloping glass is produced on a core glass cylinder that rotates about its longitudinal axis, wherein a silicon-containing starting substance is fed to a plasma burner, said substance is then oxidized in a plasma flame assigned to the plasma burner to obtain SiO2 particles, the SiO2 particles are deposited by layers on the enveloping surface of the cylinder of the core glass cylinder in the presence of fluorine and sintered into the enveloping glass. The invention aims at providing an economical method, which builds upon the above-mentioned method, in order to produce a blank mold from which optical multi-mode fibers (52) can be obtained. In comparison with fibers (51) produced according to standard methods, said optical multi-mode fibers are characterized by high initial transmission in the UV wavelength range and good resistance with respect to brief UV radiation, more particularly in the 210-300 nm wavelength range. According to the invention, a plasma flame that irradiates an ultraviolet light having a wavelength of 214 nm with an intensity of at least 0.9 μW—determined on the basis of plasma flame intensity measurement—is used for the formation and deposition of the SiO2 particles on the core glass.
摘要:
In a known method for the production of a blank mold for optical fibers, a fluorine-doped SiO2 enveloping glass is produced on a core glass cylinder that rotates about its longitudinal axis, wherein a silicon-containing starting substance is fed to a plasma burner, said substance is then oxidized in a plasma flame assigned to the plasma burner to obtain SiO2 particles, the SiO2 particles are deposited by layers on the enveloping surface of the cylinder of the core glass cylinder in the presence of fluorine and sintered into the enveloping glass. The invention aims at providing an economical method, which builds upon the above-mentioned method, in order to produce a blank mold from which optical multi-mode fibers (52) can be obtained. In comparison with fibers (51) produced according to standard methods, said optical multi-mode fibers are characterized by high initial transmission in the UV wavelength range and good resistance with respect to brief UV radiation, more particularly in the 210-300 nm wavelength range. According to the invention, a plasma flame that irradiates an ultraviolet light having a wavelength of 214 nm with an intensity of at least 0.9 ?W—determined on the basis of plasma flame intensity measurement—is used for the formation and deposition of the SiO2 particles on the core glass.
摘要:
The aim of the invention is to improve a known quartz glass cylinder for the production of an optical component, comprising an inner drilling, which is mechanically machined to size and provided with an etched structure by means of an etching treatment, subsequent to the mechanical machining, such that in the application thereof for production of pre-forms and optical fibers, few bubbles arise along the boundary surface between core and sleeve. Said aim is achieved, whereby the etched structure comprises striations with a maximum depth of 2.0 mm and a maximum width of 100 μm. A method for production of such a quartz glass cylinder mechanically machined to size is characterized in that the mechanical machining comprises several serial removal processes with successively lower removal depths, whereby after the last removal process the inner drilling has sub-surface striations with a maximum depth of 2 mm and the inner drilling is subsequently subjected to an etching treatment such that an etching removal with a maximum depth of 50 μm is achieved.
摘要:
Jacket tubes of synthetically produced quartz glass as a semi-finished product for producing an outer cladding glass layer of an optical fiber are generally known. The invention relates to an improvement of a jacket tube in terms of inexpensive producibility and of suitability as a semi-finished product for optical fibers having a low optical attenuation. According to the invention this object is achieved by a jacket tube in which the quartz glass has a content of metastable OH groups of less than 0.05 wt ppm and a content of anneal-stable OH groups of less than 0.05 wt ppm.
摘要:
In a known method for producing an SiO2 blank, SiO2 particles are formed in a burner flame assigned to a deposition burner and are deposited under the effect of an electrical field on a deposition surface of a carrier rotating about its longitudinal axis, said at least one deposition burner being reciprocated in a predetermined sequence of movement along the developing blank between turn-around points. Starting from said method, in order to obtain blanks of a predetermined, in particular axially homogeneous, density and mass distribution, it is suggested according to the invention that the geometrical shape of the burner flame should be varied by the electrical field in dependence upon the position of the deposition burner during the sequence of movement. An apparatus which is suited for carrying out the method comprises a carrier which is rotatable about its longitudinal axis, a deposition burner for producing SiO2 particles in a burner flame, a drive device by means of which the deposition burner can be reciprocated along the carrier, and a pair of electrodes which is connected to a source of voltage for producing an electrical field which is operative in the area of the burner flame and which, when viewed along the path of movement of the deposition burner, is locally inhomogeneous or variable in time in dependence upon the position of the deposition burner during the sequence of movement of the deposition burner.
摘要:
In a known method for producing an SiO2 blank, SiO2 particles are formed in a burner flame of a deposition burner and are deposited under the effect of an electrical field on a substrate. Starting therefrom, in order to indicate a simple and inexpensive method by means of which blanks can be produced with a predetermined, in particular axially homogeneous, mass and density distribution, it is suggested according to the invention that the geometrical shape of the burner flame (8) is adjusted by the effect of the electrical field (9) in dependence upon the geometrical parameter of a deposition surface (12; 21) of the substrate (1) that is assigned to the burner flame (8). An apparatus suited for performing the method comprises a substrate, at least one deposition burner for producing SiO2 particles in a burner flame assigned to the deposition burner, a measuring device for sensing a geometrical parameter in the area of a deposition surface of the SiO2 blank, and a pair of electrodes connected to a source of voltage for producing an electrical field (9) which is operative in the area of the burner flame and is adjustable in dependence upon the geometrical parameter of that deposition surface (21; 21) of the substrate that is assigned to the burner flame (8).
摘要:
A method for producing synthetic quartz glass comprises providing a liquid SiO2 feedstock material containing mainly octamethylcyclotetrasiloxane D4, vaporizing the SiO2 feedstock material into a feedstock vapor, converting the feedstock vapor into SiO2 particles, depositing the SiO2 particles on a deposition surface while forming a porous SiO2 soot body. and vitrifying the SiO2 soot body while forming the synthetic quartz glass. To produce large—volume cylindrical soot bodies with outer diameters of more than 300 mm of improved material homogeneity. the liquid feedstock material contains additional components comprising hexarnethylcyciotrisilxane D3 and its linear homolog with a weight fraction mD3, dodecamethylcyclohexasiloxane D6 and its linear homolog with a weight fraction mD6, and tetradecamethylcycloheptasiloxane D7 and/or hexadecamethylcyclooctasiloxane D8 and its linear homologs with a weight fraction mD7+. The weight ratio mD3/mD6 is in a range between 0.5 and 500 and the weight fraction mD7+is at least 20 wt. ppm.
摘要:
A known method for producing synthetic quartz glass comprises the method steps of: forming a stream of a SiO2 feedstock material which contains octamethylcyclotetrasiloxane (D4) as the main component which has a reference molecular mass assigned to it, feeding the stream to a reaction zone in which the feedstock material is converted under formation of amorphous SiO2 particles by pyrolysis or hydrolysis into SiO2, depositing the amorphous SiO2 particles on a deposition surface while forming a porous SiO2 soot body, and vitrifying the SiO2 soot body while forming the synthetic quartz glass. Starting therefrom, to enable the production of large-volume cylindrical soot bodies with outer diameters of more than 300 mm of improved material homogeneity, it is suggested according to the invention that the feedstock material contains additional components in the form of further polyalkylsiloxanes, wherein light polyalkylsiloxanes with a relative molecular mass of less than the reference molecular mass are contained with a weight fraction of at least 50 ppm, and heavy polyalkylsiloxanes with a relative molecular mass of more than the reference molecular mass are contained with a weight fraction of at least 30 ppm.