摘要:
Remote monitoring of vehicle washing facilities allows a facility operator to more efficiently manage each site, particularly when combined with environmental conditions that influence the rate at which individual chemicals are used. Accurate chemical exhaustion times can therefore be predicted and communicated to the operator, and wash sequences and parameters may be altered in accordance with such environmental parameters. For example, information related to the composition of soil on a car may be monitored and used to alter the chemicals used in the wash cycle for that car. Other environmental conditions may include without limitation weather conditions, road conditions, types of vehicles, mechanical system status, vehicle temperature, etc.
摘要:
A method and system for routing a delivery vehicle to a chemical usage facility is disclosed. The chemical usage facility includes one or more chemical dispense systems that dispense one or more chemical product. The quantity of each chemical product remaining is measured and communicated to a central management facility. The central management facility analyzes a trend in product usage to predict when the product quantity will reach a threshold depletion point. The chemical usage facility is scheduled on the route according to the predicted time associated with the threshold depletion point.
摘要:
A UV absorption spectrometer includes a housing, a controller, and a sensor unit including an ultraviolet light source, an analytical area in an analytical cell or in running water or gaseous medium, and an UV wavelength separator including a UV detector. An ultraviolet light in a wavelength range of 200-320 nm emits from the light source through the analytical area to the wavelength separator, and the controller transforms output signals from the UV detector into absorbance values or optical densities for two or more wavelengths in the wavelength range, calculates differences of said absorbance values or optical densities, determines a concentration of a chemical in the solution with calibration constants found for a known concentration of the chemical and said differences of said absorbance values or optical densities.
摘要:
An ultraviolet (UV) fluorometric sensor measures a chemical concentration in a sample based on the measured fluorescence of the sample. The sensor includes a controller, at least one UV light source, and at least one UV detector. The sensor emits UV light in a wavelength range of 245-265 nm from the light source through the sample in an analytical area. The UV detector measures the fluorescence emission from the sample. The controller transforms output signals from the UV detector into fluorescence values or optical densities for one or more wavelengths in the wavelength range of 265-340 nm. The controller calculates the chemical concentration of the chemical in the sample based on the measured fluorescence emissions.