摘要:
The synchronizing apparatus includes a block for detecting a code from an input signal, a block for detecting from the code the variable points of the code at several times as high as the symbol rate, a block for calculating a histogram of the detected variables of the code to time, and a block for deciding that the phase number at which the calculated histogram takes the maximum value is a symbol synchronization point. This synchronizing apparatus detects the zero-cross points of an intermediate frequency band signal at N times as high as the symbol rate. It also calculates a histogram of detected time (0 to N−1). The time (0 to N−1) at which the histogram is the maximum within a predetermined detected time is selected as a symbol clock, and thereby symbol synchronization is established.
摘要:
An estimator of error rate is provided for reducing variations of an error pulse count value at burst signals of a received signal for digital mobile communications and thereby improving an accuracy of estimating an error rate. The estimator of error rate includes detectors for detecting that phase information derived from a baseband signal of an I channel (I signal) and a baseband signal of a Q channel (Q signal) is located in an error pulse generation area, detectors for detecting that envelope information of the I signal and the Q signal is located in the error pulse generation area, and a counter for detecting that the phase error signal and the envelope error signal are outputted and counting the signals. The estimator operates to estimate an error rate based on an error pulse count value at one period. The estimator operates to detect that the phase information and the envelope information are located in the error pulse generation area. This serves to suppress the probability of counting correct signals and reducing variations of a count value at the burst signals, thereby improving an accuracy of estimating an error rate.
摘要:
A differential detector imparted with error correcting function for detecting a differentially phase shifted signal while performing error correction includes a one-symbol differential detector for performing phase comparison between a current input signal and a signal preceding by one symbol, a delay circuit for delaying a one-symbol differential detection signal by two symbol periods, a two-symbol differential detector for performing phase comparison between the current input signal and an input signal preceding by two symbol periods, a four-symbol differential detector for performing phase comparison between the current input signal and an input signal preceding by four symbol periods, and two error correction circuits. By making use of the four-symbol differential detection signal, error correction of the two-symbol differential detection signal is performed by the error correction circuit while error correction of the one-symbol differential detection signal is performed by using the corrected two-symbol differential detection signal. By diminishing the error of the two-symbol differential detection signal, the error correcting capability for the one-symbol differential detection signal is enhanced with bit error rate characteristic being improved.
摘要:
The synchronizing apparatus includes a block for detecting a code from an input signal, a block for detecting from the code the variable points of the code at several times as high as the symbol rate, a block for calculating a histogram of the detected variables of the code to time, and a block for deciding that the phase number at which the calculated histogram takes the maximum value is a symbol synchronization point. This synchronizing apparatus detects the zero-cross points of an intermediate frequency band signal at N times as high as the symbol rate. It also calculates a histogram of detected time (0 to N−1). The time (0 to N−1) at which the histogram is the maximum within a predetermined detected time is selected as a symbol clock, and thereby symbol synchronization is established.
摘要:
A method and apparatus for setting a guard interval in an OFDM communication. The method includes attaching a part of a first valid symbol to the first valid symbol as a guard interval and attaching a part of a second valid symbol requiring higher channel quality than the first valid symbol, to the second valid symbol as a guard interval, and providing the guard interval of the second valid symbol at a length greater than the guard interval of the first valid symbol.
摘要:
The subtractor of the reception system calculates the channel quality using an optimal guard interval length detection signal inserted into one carrier by the transmission system, then the optimal guard interval length detector calculates the minimum guard interval length necessary to eliminate delayed signals using this calculated channel quality, inserts the control signal indicating this guard interval length into one carrier and the reception system sets the guard interval length using this control signal.
摘要:
A transmission device capable of reducing the information amount of channel quality indicators (CQIs) without deteriorating throughput. In the device, an upper bit transmission control unit (104) sets the transmission intervals between upper bits of the CQIs inputted from an S/P conversion unit (103) to be longer than the transmission intervals between lower bits of the CQIs, and a lower bit transmission control unit (105) sets the transmission intervals between the lower bits of the CQIs inputted from the S/P conversion unit (103). Then, a transmission unit (107) transmits the CQI on the basis of the transmission intervals respectively set by the upper bit transmission control unit (104) and the lower bit transmission control unit (105).
摘要:
A communication system enabling significant reduction in delay in handover between MAPs without increasing the number of MAPs to install. In the communication system, MAP(101) issues a Router Advertisement to AR(111) to AR(118). Particularly, MAP(101) assigns a plurality of Router Advertisements of a source of care-of address (RCOA) to register with HA to AR(118) of a cell on either side of a boundary of areas for each MAP. MN(107) receives a Router Advertisement transmitted from AR that is a communicating party among AR(119) to AR(126), and using the Router Advertisement, generates care-of addresses, RCOA and LCOA. AR(111) to AR(118) transmit the Router Advertisement RA generated by MAP(101) to MN in communication. Further, AR(111) to AR(118) transmit the care-or-addresses, RCOA and LCOA, issued from MN(107) to MAP(101).
摘要:
There is provided a transmission device capable of preventing increase of retransmission information or encoding redundant bit and improving a throughput in a MIMO communication method. In this device, an encoding unit (130) subjects data transmitted from a first transmission antenna (110) and a second transmission antenna (120) each formed by a plurality of antennas, to encoding processing all at once. Modulation units (113, 123) modulate the data encoded by the encoding unit (130) for each of the first and the second transmission antennas (110, 120). Transmission units (115, 125) process the modulated data so that it can be transmitted from the corresponding first and the second antennas (110, 120). A transmission control unit (160) performs transmission control of the data transmitted from the respective antennas (110, 120). When retransmitting data, the transmission control unit (160) retransmits the data transmitted from a transmission antenna having a smaller number of antennas than the first and the second antennas (110, 120).
摘要:
A control section (110) recognizes the type of data included in a transmission signal and outputs a control signal (C1) to an S/P conversion section (101) and a spreading control section (107). The S/P conversion section (101) apportions a specific type of data output from the control section (110) to different transmission systems. Spreading sections (102, 103) carry out spreading processing on the specific type of data output from the S/P conversion section (101) with different spreading codes assigned thereto under the control of the spreading control section (107). The data output from the spreading sections (102, 103) is transmitted by radio through addition sections (104-1, 104-2), transmission sections (105-1, 105-2) and antennas (106-1, 106-2). In this way, it is possible to improve the reception performance on the receiving side for specific data while maintaining the transmission efficiency of an MIMO communication system.