摘要:
A method of manufacturing an X-ray tube comprises the steps of applying the bearing portions with liquid metal lubricant and heating the bearing portions defined by a rotary structure and a stationary shaft to a temperature of 200.degree. C. or more in a vacuum condition. An apparatus for manufacturing an X-ray tube comprises a vacuum bell jar having a heating unit, a metal lubricant injector provided in the vacuum bell jar and a holding and controlling device for holding the rotary structure and the stationary shaft and controlling the movement and the mutual connection of the rotary structure and stationary shaft externally of the vacuum envelope.
摘要:
A rotary-anode X-ray tube having a rotor, a stationary shaft, and a sliding bearing connecting the rotor and the stationary shaft, forming a gap filled with liquid metal lubricant. The rotor has a first rotary member supporting an anode target and a second rotary member at which a sliding bearing is installed and which is coaxial with the first rotary member. The first and the second rotary members are connected at that end of the heat conductive path which is remote from the anode target. A heat insulating gap is formed at all fitting portions, but the remote end. Therefore, the temperature rise of the sliding bearing is controlled without using refregerant, and stable rotation of the bearing is secured.
摘要:
A rotary X-ray tube of the anode type wherein a jacket which serves to prevent lubricant from being scattered into the space in a vacuum envelope is attached to at least one of a rotary structure to which an anode target is fixed and a stationary structure for holding the rotating body, enclosing a clearance opening which forms a border relative to the space in the vacuum envelope.
摘要:
A rotary-anode type X-ray tube wherein bubbles produced in the gap of a sliding bearing are securely and easily replaced with liquid metal lubricant, and the metal lubricant is prevented from leaking. The rotary anode is secured to a cylindrical rotary structure. A columnar fixed structure is secured to the rotary structure forming a gap between the rotary structure and fixed structure. A liquid metal lubricant fills the gap. Spiral grooves are formed on a part of the outer surface of the fixed structure and the sliding bearing is installed between the fixed structure and the rotary structure. The rotary structure and fixed structure are housed in a vacuum envelope. The gap of the sliding bearing is connected to the space inside the vacuum envelope through an annular space. A gap is formed between a ring block for blocking the opening of the rotary structure and the fixed structure. A spiral groove to return the metal lubricant to the annular space is formed on the outer surface of the ring block facing the gap, and the annular space is coated with a film repelling the metal lubricant. The annular space and the gap between the ring block and the fixed structure serve to separate from the metal lubricant in the sliding bearing, the bubbles produced therein.
摘要:
A rotary anode type X-ray tube comprises a thin gas passageway extending from a lubricant chamber formed along the axis of a stationary structure and open at a fine gap G effective for preventing a lubricant leakage. In manufacturing the tube, a liquid metal lubricant is supplied to the lubricant chamber and to a slide bearing section, followed by assembling the tube and, then, sealing the assembled tube in a vacuum vessel. In the subsequent exhausting step, an open end of the gas passageway is allowed to face upward. The particular exhausting operation permits completely releasing to the outside the gas impregnated in the bearing-constituting members and the liquid metal lubricant, making it possible to maintain a stable bearing function.
摘要:
An X-ray tube of the rotary anode type includes a rotary structure to which an anode target is fixed, a stationary structure fitted into the rotating member, slide bearings arranged between them and provided with spiral grooves, and a lubricant consisting of gallium alloy and supplied to the slide bearings. The rotary structure includes a first rotating member to which the anode target is connected and a second rotating member provided with the bearings. These first and second rotating members are kept coaxial to each other and connected together at their those portions which are remote from the anode target when viewed in the rotating axis direction of the target and along a heat transmitting line extending from the target to the bearings, but heat insulating clearances and are formed between the rotating members at their other portions not connected. The first rotating member is made of one of those materials which have a heat conductivity smaller than 0.1 (cal/cm.sec..degree.C.) at temperature range of 0.degree. to 500.degree. C. The second rotating member is made of alloy whose main components are iron and nickel, alloy whose main components are iron, nickel and cobalt, alloy whose main components are iron and chromium, alloy whose main components are iron, chromium and nickel, or iron alloy including iron, chromium and one of carbon, molybdenum and tungsten.
摘要:
A rotary X-ray tube of the anode type wherein at least one of bearing surfaces which are partly formed on rotary and stationary structures is made of ceramics whose main component is the nitride, boride or carbide of at least one of those deviation metals, except chromium, which belong to a group IVA, VA or VIA element of a period 4, 5 or 6 of the Periodic Table.
摘要:
In a rotary-anode type X-ray tube, a rotary-anode is fixed to a cylindrical rotary structure, and a columnar stationary shaft is fitted in the rotary structure. A gap is formed between the rotary structure and the stationary shaft. The gap is filled with a liquid metal lubricant. Spiral grooves are formed in part of the outer surface of the stationary shaft to form a radial sliding bearing between the stationary shaft and the rotary structure. Spiral grooves are formed in the end faces of the stationary shaft to form a thrust sliding bearing between the stationary shaft and the rotary structure. A recess is formed in the stationary shaft to communicate with gaps in the radial sliding bearing. A lubricant storage chamber for storing the liquid metal lubricant is formed in the stationary shaft along the center axis. The storage chamber communicates with communicating holes which radially extend to be open to an outer surface region, of the stationary shaft, in which no spiral grooves are formed. With this structure, a sufficient amount of liquid metal lubricant required for a long-term operation of the sliding bearings can be stored in the X-ray tube, thereby maintaining a stable dynamic pressure type sliding bearing operation for a long period of time.
摘要:
In a rotary-anode type X-ray tube, a rotary anode is fixed to a cylindrical rotary structure, and a columnar stationary shaft is fit in the rotary structure. A gap is formed between the rotary structure and the stationary shaft, and the gap is filled with a liquid metal lubricant. Spiral grooves are formed in portions of the outer surface of the stationary shaft to form a sliding bearing between the stationary shaft and the rotary structure. Base members of molybdenum, tungsten, niobium, or tantalum, as surface portions, are formed on the inner surface of the rotary structure and the outer surface of the stationary shaft, and reaction layers containing the material for the base member and gallium are respectively formed on the surface portions to a thickness of 1 .mu.m or more.
摘要:
In an X-ray tomographic apparatus, while rotating a gantry rotary section around a region where an object to be photographed is placed, the anode target of an X-ray tube is rotated at a predetermined high rotation rate and X-rays are emitted from the anode target. In emitting the X-rays, the rotation torque is increased to be larger than that prior to rotation of the gantry rotary section in accordance with the rotation drive power supplied to a stator coil. A decrease in rotation rate of the anode target of the X-ray tube can be prevented even during rotation of the gantry rotary section, radiation at a necessary and sufficient X-ray dose can be assured, and an X-ray tomographic image can be properly obtained.