摘要:
A polymer electrolyte fuel cell comprising a first separators for oxidizing gas and a second separator for fuel gas and a membrane/electrode assembly sandwiched between the separators. A first group of oxidizing gas flow passages flowing, from an entrance towards a turning point, has the longer length than a second group of oxidizing gas flow passages. The second group of flow passages, from the turning point towards an exit, are formed on the plane of the first separator. A downstream of the flow passages of the first group is located near an upper stream of the flow passages of the second. The flow passages of the first group and flow passages of the second group adjoin one another on the plane of the first separator.
摘要:
A polymer electrolyte fuel cell comprises a fuel cell stack and a humidifier. The fuel cell stack includes plural cells in which each cell has a pair of electrodes and a proton-conductive electrolyte membrane arranged between the pair of electrodes, wherein an oxidant gas or a fuel gas passes through the humidifier before being fed to the fuel cell stack, and wherein a wet gas containing water or water vapor also passes through the humidifier. In the fuel cell, the humidifier includes a porous separating layer and a hydrophilic water-releasing layer, wherein the separating layer is configured to separate the wet gas from the oxidant gas or the fuel gas in the humidifier, and wherein the hydrophilic water-releasing layer is disposed in a side of the oxidant gas or the fuel gas to the separating layer in the humidifier.
摘要:
A polymer electrolyte fuel cell comprises a fuel cell stack and a humidifier. The fuel cell stack includes plural cells in which each cell has a pair of electrodes and a proton-conductive electrolyte membrane arranged between the pair of electrodes, wherein an oxidant gas or a fuel gas passes through the humidifier before being fed to the fuel cell stack, and wherein a wet gas containing water or water vapor also passes through the humidifier. In the fuel cell, the humidifier includes a porous separating layer and a hydrophilic water-releasing layer, wherein the separating layer is configured to separate the wet gas from the oxidant gas or the fuel gas in the humidifier, and wherein the hydrophilic water-releasing layer is disposed in a side of the oxidant gas or the fuel gas to the separating layer in the humidifier.
摘要:
The gas generation and the decrease in battery capacity during high temperature storage of a lithium secondary battery are suppressed. The electrolyte contains a polymerizable compound or a polymer, the polymerizable compound contains a compound having an aromatic functional group and a polymerizable functional group and a compound having a complex-forming functional group forming a complex with a metal ion and a polymerizable functional group, and the polymer has the complex-forming functional group, the aromatic functional group and a residue of the polymerizable functional group.
摘要:
An overcharge inhibitor is provided which increases an internal resistance of a battery, being electropolymerized by reaction with a positive electrode at a high potential in overcharging.The overcharge inhibitor is produced by using a polymer containing a polymerizable monomer as a repeating unit. The polymerizable monomer has a functional group that is electropolymerized at a potential of 4.3 to 5.5 V based on a lithium metal reference.
摘要:
An overcharge inhibitor is provided which increases an internal resistance of a battery, being electropolymerized by reaction with a positive electrode at a high potential in overcharging.The overcharge inhibitor is produced by using a polymer containing a polymerizable monomer as a repeating unit. The polymerizable monomer has a functional group that is electropolymerized at a potential of 4.3 to 5.5 V based on a lithium metal reference.
摘要:
Provided is a lithium ion rechargeable battery less suffering from swelling even when stored at high temperatures. Disclosed are a cathode active material, a cathode for a lithium ion rechargeable battery using the cathode active material, and a lithium ion rechargeable battery using the cathode. The cathode active material includes particles, each of the particles including a cathode material capable of intercalating and deintercalating lithium ions, and a film formed on at least part of surfaces of the particles. The film includes a compound represented by Chemical Formula (1). Examples of the compound represented by Chemical Formula (1) include lithium squarate and dilithium squarate. Preferably, the lithium ion rechargeable battery is a prismatic battery.