摘要:
An active material for positive electrode for a non-aqueous electrolyte secondary battery comprises a lithium-metal composite oxide that is expressed by the general formula of Lix(Ni1-yCoy)1-zMzO2 (where 0.98≦x≦1.10, 0.05≦y≦0.4, 0.01≦z≦0.2, and where M is at least one metal element selected from the group of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga), and where the SO4 ion content is in the range from 0.4 weight % to 2.5 weight %, and the occupancy rate of lithium found from the X-ray diffraction chart and using Rietveld analysis is 98% or greater, and the carbon amount measured by way of the high frequency heating-infrared adsorption method is 0.12 weight % or less, and that the Karl Fischer water content due to heating at 180° C. be 0.2 weight % or less.
摘要翻译:用于非水电解质二次电池的正极活性材料包括由通式Lix(Ni1-yCoy)1-zMzO2表示的锂金属复合氧化物(其中0.98 <= x <= 1.10,0.05 < = y <= 0.4,0.01 <= z <= 0.2,其中M是选自Al,Mg,Mn,Ti,Fe,Cu,Zn和Ga中的至少一种金属元素),并且其中SO 4离子 含量在0.4重量%至2.5重量%的范围内,并且从X射线衍射图和使用Rietveld分析发现的锂的占有率为98%以上,通过高频加热测量的碳量 - 红外吸收法为0.12重量%以下,由于180℃下加热引起的卡尔费休含水量为0.2重量%以下。
摘要:
A method of manufacturing a non-aqueous electrolyte secondary battery is provided wherein the positive electrode is made from a lithium-metal composite oxide represented by the general formula Lix(Ni1-y, Coy)1-zMzO2 (0.98≦x≦1.10, 0.05≦y≦0.4, 0.01≦z≦0.2, in which M represents at least one element selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga), and having an average particle diameter of 5 μm to 10 μm a C-amount of 0.14 wt % or less measured by way of the high-frequency heating-IR absorption method, and a Karl Fischer moisture content of 0.2 wt % or less when heated to 180° C. and the method comprising the steps of applying a paste of active material for positive electrode to electrode plate to make an electrode, then drying the electrode, and pressing and then installing the electrode in a battery, in a work atmosphere having an absolute moisture content of 10 g/m3 or less.
摘要翻译:提供一种制造非水电解质二次电池的方法,其中正极由通式为Li x-x(Ni 1-y)表示的锂金属复合氧化物制成, O> O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O,,,,,,, 0.05≤y≤0.4,0.01≤z≤0.2,其中M表示选自Al,Mg,Mn,Ti,Fe,Cu,Zn和Ga中的至少一种元素),并且具有 通过高频加热 - 红外吸收法测定的平均粒径为5〜10μm,C量为0.14重量%以下,卡尔费休水分含量为0.2重量%以下时,加热至180℃ 并且所述方法包括以下步骤:将正极活性物质的糊剂施加到电极板以制造电极,然后干燥电极,然后在具有绝对水分的工作气氛中按压然后将电极安装在电池中 含量为10g / m 3以下。
摘要:
A lithium-nickel complex oxide material for active material for positive electrode of a lithium secondary battery is provided and expressed by the general formula Lix(Ni1-yCoy)1-zMzO2 (where, 0.98≦x≦1.10, 0.05≦y≦0.4, 0.01≦z≦0.2, M=at least one element selected from the group of Al, Zn, Ti and Mg), wherein according to Rietveld analysis, the Li site occupancy rate for the Li site in the crystal is 98% or greater, and the average particle size of the spherical secondary particles is 5 μm to 15 μm, and wherein the difference in specific surface area between before and after the washing process is 1.0 m2/g or less.
摘要:
A nonaqueous electrolyte solution in which an electrolyte salt is dissolved in an organic solvent includes, includes at least one or more compounds selected from the silicon compounds represented by general formula (1), (2), or (3) below: (In the formulae, each of R1, R2, and R3 independently represents a C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, or C6-8 aryl group; R4 represents a C1-8 alkylene, C2-8 alkenylene, C2-8 alkynylene, or C6-8 arylene group; and n represents 1 or 2. When n is 1, X represents a fluorine atom, trifluoromethyl group, C1-8 alkoxy group, C2-8 alkenyloxy group, C6-8 aryloxy group, or C2-8 acyloxy group, C1-8 sulfonyloxy group, isocyanato group, isothiocyanato group, or cyano group. When n is 2, X represents a C1-8 alkylene group, C1-8 alkylenedioxy group, C2-8 alkenylene group, C2-8 alkenylenedioxy group, C2-8 alkynylene group, C2-8 alkynylenedioxy group, C6-8 arylene group, C6-8 arylenedioxy group, C2-8 diacyloxy group, oxygen atom, or direct bond.)
摘要:
A nonaqueous electrolyte solution in which an electrolyte salt is dissolved in an organic solvent includes, includes at least one or more compounds selected from the silicon compounds represented by general formula (1), (2), or (3) below: (In the formulae, each of R1, R2, and R3 independently represents a C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, or C6-8 aryl group; R4 represents a C1-8 alkylene, C2-8 alkenylene, C2-8 alkynylene, or C6-8 arylene group; and n represents 1 or 2. When n is 1, X represents a fluorine atom, trifluoromethyl group, C1-8 alkoxy group, C2-8 alkenyloxy group, C6-8 aryloxy group, or C2-8 acyloxy group, C1-8 sulfonyloxy group, isocyanato group, isothiocyanato group, or cyano group. When n is 2, X represents a C1-8 alkylene group, C1-8 alkylenedioxy group, C2-8 alkenylene group, C2-8 alkenylenedioxy group, C2-8 alkynylene group, C2-8 alkynylenedioxy group, C6-8 arylene group, C6-8 arylenedioxy group, C2-8 diacyloxy group, oxygen atom, or direct bond.)
摘要:
To provide a positive electrode active material for a non-aqueous electrolyte secondary battery, which if used as a positive electrode for a lithium ion secondary battery, the battery internal resistance can be reduced, giving a secondary battery superior in output characteristics and life property. After mixing raw material powders in specified quantities of each so as to become a lithium-metal complex oxide represented by LizNi1-wMwO2 (wherein M is at least one kind or more of metal elements selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga; and w and z respectively satisfy 0
摘要:
To provide a positive electrode active material for a non-aqueous electrolyte secondary battery, which if used as a positive electrode for a lithium ion secondary battery, the battery internal resistance can be reduced, giving a secondary battery superior in output characteristics and life property. After mixing raw material powders in specified quantities of each so as to become a lithium-metal complex oxide represented by LizNi1-wMwO2 (wherein M is at least one kind or more of metal elements selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga; and w and z respectively satisfy 0
摘要翻译:为了提供一种用于非水电解质二次电池的正极活性材料,如果用作锂离子二次电池的正极,则可以降低电池内阻,从而给出输出特性和寿命特性优异的二次电池。 将各种规定量的原料粉末混合后,成为由Li zi Ni-1-w M w N / N表示的锂 - 金属复合氧化物 >其中M是选自Co,Al,Mg,Mn,Ti,Fe,Cu,Zn和Ga中的至少一种以上的金属元素; w 和z分别满足0
摘要:
Disclosed is a non-aqueous electrolyte secondary battery using a polyanion compound or a lithium nickelate as a positive electrode active material, suppressing the elution of a transition metal from the polyanion compound or ameliorating the deterioration of a binder by a residual alkali component, and provides a non-aqueous electrolyte secondary battery having a negative electrode intercalating and deintercalating lithium ions, a positive electrode containing a lithium-containing compound as a positive electrode active material, and a non-aqueous electrolyte with a lithium salt dissolved in organic solvent. The lithium-containing compound is a polyanion compound or a lithium nickelate. The non-aqueous electrolyte contains a fluorosilane compound: R1 to R3: alkyl group having 1-8 carbon(s), an alkenyl group having 2-8 carbons, a cycloalkyl group having 5-8 carbons, an aryl group having 6-8 carbons or a fluorine atom. R4: alkylene group having 1-8 carbon(s) or an alkylene group having 4-8 carbons having an ether group.
摘要:
According to one embodiment, a method of manufacturing a camera module includes, disposing a first member on the image sensor, the first member includes a first non-conductor, a first metal film covering the first non-conductor, and a first insulation film covering the first metal film, disposing a second member on or above the first member, the second member includes a second non-conductor, a second metal film covering the second non-conductor, and a second insulation film covering the second metal film, and applying a predetermined voltage between the first member and the second member or between the image sensor and the second member, thereby breaking at least parts of the first insulation film and the second insulation film.
摘要:
A simulation device includes an input unit which receives an input of simulation data including material information of the irradiation target and irradiation information of a charged particle beam, and an arithmetic unit which calculates the dose distribution of the charged particle beam in the irradiation target on the basis of simulation data received by the input unit and the dose distribution kernel. The arithmetic unit segments the charged particle beam spread to a predetermined range at an intermediate portion in the traveling direction of the charged particle beam, hypothesizes a plurality of virtual shapes having conical spread with a segmented position as a start point, and calculates the dose distribution of the charged particle beam in the irradiation target on the basis of simulation data received by the input unit and a plurality of virtual shapes of the charged particle beam.