Abstract:
A configuration that reduces a parasitic capacitance between wires is achieved at a low cost. Disclosed is an acoustic wave filter provided with a piezoelectric substrate 1, resonators 2a and 2b that include a comb-shaped electrode formed on the piezoelectric substrate 1, a wiring portion 3 that is connected to the comb-shaped electrode, and a dielectric layer 4 formed to cover the comb-shaped electrode. The wiring portion 3 is provided with a lower layer wiring portion 3d that is disposed in the same layer as the comb-shaped electrode and an upper layer wiring portion 3e that is disposed on the lower layer wiring portion 3d. The upper layer wiring portion 3e includes a region that has a wider electrode width than the electrode width of the lower layer wiring portion 3d.
Abstract:
An elastic wave device includes resonators having a piezoelectric substrate, a resonation unit formed on the piezoelectric substrate, and reflectors formed on respective sides of the resonation unit on the piezoelectric substrate, and bumps formed on the piezoelectric substrate. The resonators are configured such that two or more split resonators are connected in parallel, and a bump is formed in a region sandwiched between reflectors of the split resonators.
Abstract:
An acoustic wave element includes: resonators 2 each including an electrode to excite acoustic waves; a power supply wiring portion 3 that is disposed so as to connect the resonators 2 electrically; a piezoelectric substrate 4 on which the resonators 2 and the power supply wiring portion 3 are formed; a second medium 5 that is formed on the piezoelectric substrate 4 so as to cover the resonators 2; and a third medium 6 that is formed on the piezoelectric substrate 4 so as to cover at least the second medium 5 and the power supply wiring portion 3. A side surface 34 of the power supply wiring portion 3 that is in contact with a surface of the piezoelectric substrate 4 forms an obtuse first angle θ with respect to the surface 4a of the piezoelectric substrate 4.
Abstract:
An elastic wave device is described which includes a piezoelectric substrate, comb-shaped electrodes having teeth electrodes that are disposed so as to face each other on the piezoelectric substrate, a non-overlapping area in which the teeth electrodes of the comb-shaped electrodes do not overlap each other, and a overlapping area in which the teeth electrodes overlap each other and the velocity of sound is higher than that in the non-overlapping area.
Abstract:
An acoustic wave element includes: resonators 2 each including an electrode to excite acoustic waves; a power supply wiring portion 3 that is disposed so as to connect the resonators 2 electrically; a piezoelectric substrate 4 on which the resonators 2 and the power supply wiring portion 3 are formed; a second medium 5 that is formed on the piezoelectric substrate 4 so as to cover the resonators 2; and a third medium 6 that is formed on the piezoelectric substrate 4 so as to cover at least the second medium 5 and the power supply wiring portion 3. A side surface 34 of the power supply wiring portion 3 that is in contact with a surface of the piezoelectric substrate 4 forms an obtuse first angle θ with respect to the surface 4a of the piezoelectric substrate 4.
Abstract:
An elastic wave device is described which includes a piezoelectric substrate, comb-shaped electrodes having teeth electrodes that are disposed so as to face each other on the piezoelectric substrate, a non-overlapping area in which the teeth electrodes of the comb-shaped electrodes do not overlap each other, and a overlapping area in which the teeth electrodes overlap each other and the velocity of sound is higher than that in the non-overlapping area.
Abstract:
An acoustic wave device includes a piezoelectric substrate, interdigital electrodes arranged on the piezoelectric substrate, a first dielectric element arranged between the interdigital electrodes, a second dielectric element that covers the interdigital electrodes and the first dielectric element, and an adjustment element that has been formed on the first dielectric element. The adjustment element has been formed from a material whose specific gravity is greater than that of the first dielectric element and that of the second dielectric element.
Abstract:
A configuration that reduces a parasitic capacitance between wires is achieved at a low cost. Disclosed is an acoustic wave filter provided with a piezoelectric substrate, resonators that include a comb-shaped electrode formed on the piezoelectric substrate, a wiring portion that is connected to the comb-shaped electrode, and a dielectric layer formed to cover the comb-shaped electrode. The wiring portion is provided with a lower layer wiring portion that is disposed in the same layer as the comb-shaped electrode and an upper layer wiring portion that is disposed on the lower layer wiring portion. The upper layer wiring portion includes a region that has a wider electrode width than the electrode width of the lower layer wiring portion.
Abstract:
An acoustic wave device includes a piezoelectric substrate, interdigital electrodes arranged on the piezoelectric substrate, a first dielectric element arranged between the interdigital electrodes, a second dielectric element that covers the interdigital electrodes and the first dielectric element, and an adjustment element that has been formed on the first dielectric element. The adjustment element has been formed from a material whose specific gravity is greater than that of the first dielectric element and that of the second dielectric element.
Abstract:
An elastic wave device includes resonators having a piezoelectric substrate, a resonation unit formed on the piezoelectric substrate, and reflectors formed on respective sides of the resonation unit on the piezoelectric substrate, and bumps formed on the piezoelectric substrate. The resonators are configured such that two or more split resonators are connected in parallel, and a bump is formed in a region sandwiched between reflectors of the split resonators.