摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than 50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.
摘要:
A highly reliable optical semiconductor device insusceptible to degradation in the characteristics thereof. An n-type buffer layer, n-type first cladding layer, active layer, a p-type first layer of the second cladding layer, p-type etch-stop layer, p-type second layer of the second cladding layer, and p-type contact layer are formed an n-type semiconductor substrate. Two lengths of separation grooves are formed in parallel in such a way as to reach the underside of the p-type second layer of the second cladding layer from the top face of the contact layer, and a ridge is formed between the respective separation grooves. The ridge comprises a lower portion thereof, made up of the second layer of the second cladding layer, and a portion of the contact layer, corresponding to the ridge, made up of the contact layer. Side parts of the top face of the portion of the contact layer, corresponding to the ridge, facing the separation grooves, respectively, are turned to tilted faces, respectively, and a barrier metal layer is formed on top of the tilted faces. Portions extending from side faces of the lower portion of the ridge to run across the respective separation grooves are covered with an insulating film. Since the tilted faces are formed at the respective side parts of the top face of the portion of the contact layer, no stepping occurs to the barrier metal layer. Accordingly, Au of an Au layer formed outside of the barrier metal layer is prevented from being diffused into the portion of the contact layer, corresponding to the ridge, made of GaAs, through steeped parts of the barrier metal layer.
摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than ±50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.
摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than ±50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.
摘要:
It is an objective to control the occurrence of the disorder of a far-field pattern and of an optical axial shift. A manufacturing method of a semiconductor laser device has the step for preparing a semiconductor substrate which has growth of a multi-layer including an active layer, the step for forming a mask over the growth of a multi-layer, and a step for forming a stripe-shaped ridge by dry etching and wet etching. A structure stacking a p-type AlGaInP layer, an etch-stop layer, a p-type Alx=0.7GaInP layer, a p-type Alx=0.6GaInP layer, a p-type GaAs layer, in order, over the active layer is taken in order to make the tailing part created in the dry etching process smaller by wet etching. The tailing part is composed of a p-type Alx=0.7GaInP layer including a high mixed crystal ratio of aluminum. Therefore, the p-type Alx=0.7GaInP layer is etched faster than the p-type Alx=0.6GaInP layer during wet etching, so that the tailing part becomes smaller, the far-field pattern of the semiconductor laser device is not disordered, and the optical axis shift does not occur.
摘要翻译:目的是控制远场图案和光轴向偏移的发生。 半导体激光器件的制造方法具有制备半导体衬底的步骤,该半导体衬底具有包括有源层的多层的生长,用于在多层生长上形成掩模的步骤,以及用于形成 通过干蚀刻和湿蚀刻形成条形脊。 在有源层上依次堆叠p型AlGaInP层,蚀刻停止层,p型Al x = 0.7GaInP层,p型Al x = 0.6 GaInP层,p型GaAs层的结构 是为了使通过湿法蚀刻在干式蚀刻工艺中产生的拖尾部分变得更小。 尾部由包含铝的高混合比的p型Al x = 0.7GaInP层构成。 因此,在湿蚀刻期间,p型Al x = 0.7GaInP层比p型Al x = 0.6GaInP层蚀刻得更快,使得尾部变小,半导体激光器件的远场图案不会紊乱, 并且不发生光轴偏移。
摘要:
It is an objective to control the occurrence of the disorder of a far-field pattern and of an optical axial shift. A manufacturing method of a semiconductor laser device has the step for preparing a semiconductor substrate which has growth of a multi-layer including an active layer, the step for forming a mask over the growth of a multi-layer, and a step for forming a stripe-shaped ridge by dry etching and wet etching. A structure stacking a p-type AlGaInP layer, an etch-stop layer, a p-type Alx=0.7GaInP layer, a p-type Alx=0.6GaInP layer, a p-type GaAs layer, in order, over the active layer is taken in order to make the tailing part created in the dry etching process smaller by wet etching. The tailing part is composed of a p-type Alx=0.7GaInP layer including a high mixed crystal ratio of aluminum. Therefore, the p-type Alx=0.7GaInP layer is etched faster than the p-type Alx=0.6GaInP layer during wet etching, so that the tailing part becomes smaller, the far-field pattern of the semiconductor laser device is not disordered, and the optical axis shift does not occur.
摘要翻译:目的是控制远场图案和光轴向偏移的发生。 半导体激光器件的制造方法具有制备半导体衬底的步骤,该半导体衬底具有包括有源层的多层的生长,用于在多层生长上形成掩模的步骤,以及用于形成 通过干蚀刻和湿蚀刻形成条形脊。 堆叠p型AlGaInP层,蚀刻停止层,p型Al x = 0.7 GaInP层,p型Al x = 0.6 GaInP的结构 层,p型GaAs层,依次在有源层上,以使得在干式蚀刻工艺中产生的拖尾部分通过湿蚀刻较小。 尾部由包含铝的高混合比的p型Al x = 0.7 GaInP层构成。 因此,在湿蚀刻期间,p型Al x = 0.7 GaInP层比p型Al x = 0.6 GaInP层蚀刻得更快,使得尾部变成 较小的半导体激光器件的远场图案不会发生紊乱,并且不发生光轴偏移。
摘要:
An opto-semiconductor device. An opto-semiconductor element includes a semiconductor substrate, a multilayered semiconductor layer formed on a first surface of the semiconductor substrate and having a resonator, a first electrode with multiple conductive layers formed on the multilayered semiconductor layer, and a second electrode formed on a second surface of the semiconductor substrate. A support substrate has a first surface formed with a fixing portion having a conductive layer for fixing the first electrode connected thereto through a bonding material. Bonding material and conductive layers forming the first electrode react to form a reaction layer. The difference in thermal expansion coefficient between semiconductor substrate and support substrate is not more than ±50%. A second barrier metal layer not reactive with bonding material is formed inside the first electrode uppermost conductive layer, while uppermost layer reacts with the bonding material to form the reaction layer.
摘要:
A highly reliable optical semiconductor device insusceptible to degradation in the characteristics thereof. An n-type buffer layer, n-type first cladding layer, active layer, a p-type first layer of the second cladding layer, p-type etch-stop layer, p-type second layer of the second cladding layer, and p-type contact layer are formed an n-type semiconductor substrate. Two lengths of separation grooves are formed in parallel in such a way as to reach the underside of the p-type second layer of the second cladding layer from the top face of the contact layer, and a ridge is formed between the respective separation grooves. The ridge comprises a lower portion thereof, made up of the second layer of the second cladding layer, and a portion of the contact layer, corresponding to the ridge, made up of the contact layer. Side parts of the top face of the portion of the contact layer, corresponding to the ridge, facing the separation grooves, respectively, are turned to tilted faces, respectively, and a barrier metal layer is formed on top of the tilted faces. Portions extending from side faces of the lower portion of the ridge to run across the respective separation grooves are covered with an insulating film. Since the tilted faces are formed at the respective side parts of the top face of the portion of the contact layer, no stepping occurs to the barrier metal layer. Accordingly, Au of an Au layer formed outside of the barrier metal layer is prevented from being diffused into the portion of the contact layer, corresponding to the ridge, made of GaAs, through steeped parts of the barrier metal layer.
摘要:
An alternator for a vehicle is provided which is equipped with a heat dissipator and a cooling air generator. The heat dissipator is disposed in a rectifier to cool rectifying devices. The cooling air generator generates a flow of cooling air to the heat dissipator. The heat dissipator has a plurality of sub-fins formed thereon. Each of the sub-fins is defined by a combination of a protrusion and a recess. The protrusions are formed on one of opposed major surfaces of the heat dissipator, while the recesses are formed on the other major surface, one in coincidence with each of the protrusions in a thickness-wise direction of the heat dissipator. This permits the heat dissipator to be pressed to form the protrusions and the recesses to make the sub-fins simultaneously, thus allowing a heat-dissipating area to be increased to ensure a desired degree of heat capacity thereof.
摘要:
An alternator has front and rear bearings, supported by front and rear frames, to rotatably support a shaft of a rotor extending along axial direction. A washer is located between the rear frame and the rear bearing to apply pressing force to the rear bearing slightly movable along axial direction. The washer has a ring-shaped base portion concentrically located with the rear bearing, slanting portions extending from the base portion toward outside of radial direction such that two adjacent slanting portions arranged as each pair along circumferential direction are inclined to different sides of axial direction, and flattened portions extending from respective slanting portions toward outside and being parallel to the base portion. Flattened portions shifted to front side are in contact with the rear bearing, and flattened portions shifted to rear side are in contact with the rear frame.