Abstract:
An increase of the magnetization current can be restrained during demagnetization and magnetization, and a variable speed operation can be achieved at a high power output over a wide range of from a low speed to a high speed. A rotor 1 is configured by a rotor core 2, permanent magnets 3 having a small value as the product of the coercivity and the thickness in the magnetization direction thereof, and permanent magnets 4 having a large value as the product. When reducing a flux linkage of the permanent magnets 3, a magnetic field directed to the reverse direction of the magnetization direction of the permanent magnets 3 due to a current of an armature coil is caused to act on them. When increasing a flux linkage of the permanent magnets 3, a magnetic field directed to the same direction as the magnetization direction of the permanent magnets 3 due to a current of an armature coil is caused to act on them. A short circuit coil 8 is located in a magnetic path part of each permanent magnet 4 other than the permanent magnets 3. A magnetic field due to a magnetization current induces an induced current to generate a magnetic field on the periphery of the short circuit coil 8. The generated magnetic field and the magnetization current generate a magnetic field to magnetize the permanent magnets 3.
Abstract:
According to one embodiment, a permanent-magnet type electric rotating machine has a stator, a magnetizing coil, a rotor and a case. The stator has an armature coil configured to form a magnetic circuit for driving. The magnetizing coil is configured to form a magnetic circuit for magnetizing. The rotor has a constant magnetized magnet, a rotor core and a variable magnetized magnet. The rotor core holds the constant magnetized magnet. The constant magnetized magnet is arranged closer to the magnetic circuit for driving than the variable magnetized magnet. The variable magnetized magnet is arranged closer to the magnetic circuit for magnetizing than the constant magnetized magnet.
Abstract:
An increase of the magnetization current can be restrained during demagnetization and magnetization, and a variable speed operation can be achieved at a high power output over a wide range of from a low speed to a high speed. A rotor 1 is configured by a rotor core 2, permanent magnets 3 having a small value as the product of the coercivity and the thickness in the magnetization direction thereof, and permanent magnets 4 having a large value as the product. When reducing a flux linkage of the permanent magnets 3, a magnetic field directed to the reverse direction of the magnetization direction of the permanent magnets 3 due to a current of an armature coil is caused to act on them. When increasing a flux linkage of the permanent magnets 3, a magnetic field directed to the same direction as the magnetization direction of the permanent magnets 3 due to a current of an armature coil is caused to act on them. A short circuit coil 8 is located in a magnetic path part of each permanent magnet 4 other than the permanent magnets 3. A magnetic field due to a magnetization current induces an induced current to generate a magnetic field on the periphery of the short circuit coil 8. The generated magnetic field and the magnetization current generate a magnetic field to magnetize the permanent magnets 3.
Abstract:
A permanent magnet-reluctance type rotating machine includes an annular stator having armature windings arranged on an inner periphery of the stator, a rotor rotatably arranged inside the stator and a plurality of permanent magnets disposed in a rotor core. One permanent magnet defining each pole is divided into two magnet pieces in a direction parallel to the magnetizing direction of the permanent magnets. Owing to the division of the magnet, the mass of each permanent magnet becomes small in comparison with that of the conventional machine, so that the centrifugal force applied on the magnet holes can be reduced. Consequently, the stress generating in the rotor core is decreased to allow the rotating machine to rotate at a higher speed.
Abstract:
A rotor is provided for a permanent magnet type rotating machine having a stator 1 with armature windings 11. The rotor 3 includes a rotor core 31 and a plurality of permanent magnets 32 arranged in the rotor core 31 so as to negate magnetic flux of the armature windings 11 passing through interpoles 3b. The rotor 3 is constructed so that the average of magnetic flux in an air gap 2 between the rotor 3 and the stator 1, which is produced by the permanent magnets 32 at the armature windings' de-energized, ranges from 0.1 [T] to 0.7 [T] and the ratio (Lq/Ld) of self-inductance of the magnetic portion in a hard-magnetizing direction (q-axis) to self-inductance in an easy-magnetizing direction (d-axis) under a rated load condition ranges from 0.1 to 0.8. Under these conditions, it is possible to realize the rotating machine which operates as an induction machine at the machine's starting and also operates as an synchronous machine at the rated driving due to smooth pull-in.
Abstract:
A reluctance type rotating machine includes a stator having armature windings arranged on an inner periphery of the stator, a rotor having projection portion forming magnetic poles, and a plurality of permanent magnets arranged on both side faces of the projection portions. Owing to the provision of the permanent magnets, it is possible to restrain magnetic fluxes of the armature windings of the stator from leaking toward interpole portions between the magnetic poles. The power output of the machine can be improved by increased effective fluxes.
Abstract:
According to one embodiment, a rotor is configured by a rotor core and magnetic poles. Two or more types of permanent magnets are used such that each product of coercivity and thickness in the magnetization direction becomes different. A stator is located outside the rotor with air gap therebetween and configured by an armature core winding. At least one permanent magnet is magnetized by a magnetic field by a current of the armature winding to change a magnetic flux content thereof irreversibly. A short circuited coil is provided to surround a magnetic path portion of the other permanent magnet excluding the magnet changed irreversibly and a portion adjacent to the other permanent magnet where the magnetic flux leaks. A short-circuit current is generated in the short circuited coil by the magnetic flux generated by conducting a magnetization current to the winding. A magnetic field is generated by the short-circuit current.
Abstract:
A variable-flux motor drive system including a permanent-magnet motor including a permanent magnet, an inverter to drive the permanent-magnet motor, and a magnetize device to pass a magnetizing current for controlling flux of the permanent magnet. The permanent magnet is a variable magnet whose flux density is variable depending on a magnetizing current from the inverter. The magnetize device passes a magnetizing current that is over a magnetization saturation zone of magnetic material of the variable magnet. This system improves a flux repeatability of the variable magnet and a torque accuracy.
Abstract:
The present invention provides a permanent-magnet-type rotating electrical machine capable of realizing variable-speed operation in a wide range from low speed to high speed at high output and improving, in a wide operating range, efficiency, reliability, and productivity. A narrow magnetic path 11 is formed in a rotor core 2 of a rotor 1 at an inter-pole yoke that magnetically connects adjacent pole core portions 7 to each other, so that the narrow magnetic path is magnetically saturated with flux of a magnetic field created by a predetermined magnetizing current passed to an armature coil 21. Each of first permanent magnets 3 at each of the pole core portions 7 is magnetized with a magnetic field created by a magnetizing current passed to the armature coil 21, to irreversibly change the flux amount of the first permanent magnet.
Abstract:
A rotor for a rotating electrical machine suppresses demagnetization of permanent magnets without deteriorating motor characteristics, is low-cost, and is highly reliable. The rotor has a plurality of rotor cores (2) that are stacked together, a plurality of permanent magnets (6a, 6b) axially divided by the rotor cores (2) and circumferentially arranged on each of the rotor cores (2), to circumferentially form magnetic irregularities, and a rotor blank (14a) made of nonmagnetic material arranged between those of the rotor cores (2) that are adjacent to each other.