摘要:
The present invention relates to a Single Inductor Double Output (SIDO) power converter, which comprises a power-stage circuit, a current detector, a slope compensation device, at least two error amplifiers, a comparing unit, a mode exchange circuit, a logical device and a driver. The SIDO current converter achieves an optimal SIDO power converting efficiency by controlling a full-current mode. Furthermore, different power transferring modes, under a variety of loadings, are used to address the issue of cross regulation and at meanwhile solving output voltage ripples and transient response to ensure the SIDO power converter a more flexible usage environment and better output performance.
摘要:
The present invention relates to a Single Inductor Double Output (SIDO) power converter, which includes a power-stage circuit, a current detector, a slope compensation device, at least two error amplifiers, a comparing unit, a mode exchange circuit, a logical device and a driver. The SIDO current converter achieves an optimal SIDO power converting efficiency by controlling a full-current mode. Furthermore, different power transferring modes, under a variety of loadings, are used to address the issue of cross regulation and at meanwhile solving output voltage ripples and transient response to ensure the SIDO power converter a more flexible usage environment and better output performance.
摘要:
A voltage conversion apparatus includes a DC-to-DC conversion circuit, a sensing circuit, and a compensation circuit. The voltage conversion apparatus is capable of adaptively adjusting the system bandwidth according to the load. The system bandwidth is increased to make the converted voltage responding to the load rapidly when the voltage conversion apparatus is operated at a transient state; and the system bandwidth is decreased to increase the system stability when the voltage conversion circuit is operated at a steady state.
摘要:
A voltage conversion apparatus includes a DC-to-DC conversion circuit, a sensing circuit, and a compensation circuit. The voltage conversion apparatus is capable of adaptively adjusting the system bandwidth according to the load. The system bandwidth is increased to make the converted voltage responding to the load rapidly when the voltage conversion apparatus is operated at a transient state; and the system bandwidth is decreased to increase the system stability when the voltage conversion circuit is operated at a steady state.
摘要:
A voltage converting circuit including a power stage, a filter, a comparator, a first and a second feedback units. The power stage receives an input voltage and outputs the input voltage according to a duty cycle. The filter receives the input voltage to convert the input voltage into a current, and filters the current to obtain an output voltage. The first feedback unit amplifies a difference between a reference voltage and the output voltage to obtain an error voltage. The second feedback unit calculates the quadratic differential and integration of the output voltage to obtain a sensing voltage. The comparator compares the error voltage and the sensing voltage, and outputs a comparing result to adjust a duty ratio. Herein, a ripple of the output voltage is linearly proportional to that of the current, and DC divided voltage level of the output voltage is substantially equal to the reference voltage.
摘要:
A voltage converting circuit including a power stage, a filter, a comparator, a first and a second feedback units. The power stage receives an input voltage and outputs the input voltage according to a duty cycle. The filter receives the input voltage to convert the input voltage into a current, and filters the current to obtain an output voltage. The first feedback unit amplifies a difference between a reference voltage and the output voltage to obtain an error voltage. The second feedback unit calculates the quadratic differential and integration of the output voltage to obtain a sensing voltage. The comparator compares the error voltage and the sensing voltage, and outputs a comparing result to adjust a duty ratio. Herein, a ripple of the output voltage is linearly proportional to that of the current, and DC divided voltage level of the output voltage is substantially equal to the reference voltage.
摘要:
A voltage converter for use in a backlight module stores energy of an input voltage using an inductor and outputs a plurality of output voltages accordingly. The charging path of the inductor is controlled according to the first output voltage so that the first output voltage can be stabilized. The discharging paths from the inductor to other output voltages are controlled according to the differences between other output voltages and the first output voltage so that other output voltages can also be stabilized.
摘要:
A voltage converter for use in a backlight module stores energy of an input voltage using an inductor and outputs a plurality of output voltages accordingly. The charging path of the inductor is controlled according to the first output voltage so that the first output voltage can be stabilized. The discharging paths from the inductor to other output voltages are controlled according to the differences between other output voltages and the first output voltage so that other output voltages can also be stabilized.
摘要:
The present invention discloses a current balance circuit for a multiphase DC-DC converter. The current balance circuit comprises a current error calculation circuit, for generating a plurality of current balance signals indicating imbalance levels of a plurality of inductor currents of a plurality of channels of the multiphase DC-DC converter according to a plurality of current sensing signals of the plurality of channels, a time shift circuit, for adjusting pulse widths of a plurality of clock signals according to the plurality of current balance signals, and a ramp generator, for deciding shift levels of a plurality of ramp signals according to the plurality of clock signals.
摘要:
The present invention discloses a current balance circuit for a multiphase DC-DC converter. The current balance circuit comprises a current error calculation circuit, for generating a plurality of current balance signals indicating imbalance levels of a plurality of inductor currents of a plurality of channels of the multiphase DC-DC converter according to a plurality of current sensing signals of the plurality of channels, a time shift circuit, for adjusting pulse widths of a plurality of clock signals according to the plurality of current balance signals, and a ramp generator, for deciding shift levels of a plurality of ramp signals according to the plurality of clock signals.