摘要:
A method of figuring an exposure energy. A required exposure energy is calculated according to a critical dimension (CD) of an exposing layer. A first CD deviation is obtained from a layer before the exposing layer. From the first CD deviation, a first energy compensation is calculated. Whether the deviation of photoresist sensitivity of two sequential batches is less than 1% is checked. If the deviation of photoresist sensitivity of two sequential batches is less than 1%, a sum of the required exposure energy and the first energy compensation is the exposure energy applied to the exposing layer. Otherwise, a second CD deviation is commutated according to the deviation of photoresist sensitivity of two sequential batches. A second energy compensation is then obtained from the second CD deviation, and a sum of the required exposure energy and the first/second energy compensation is the exposure energy applied to the exposing layer.
摘要:
This invention relates to a method for forming the salicide, more particularly, to the method for forming the salicide in the partial region. The present invention uses an oxide layer to be the mask layer to form the salicide in the partial region of the logic circuit. The silicide is formed on the gate and is not formed in the diffusion region, which are in the cell array region. The silicide is formed on the gate and in the diffusion region, which are in the periphery region. The present invention method can make the semiconductor device obtain lower resistance and decrease the leakage defects.
摘要:
A method for forming a shallow trench isolation is disclosed. The method avoids using any silicon nitride material to prevent the kooi effect and use spacers to protect the corner portions of the STI. A conductive layer is used to replace the conventional used silicon nitride layer in the formation of conventional STI regions. The invention also uses a dielectric layer comprising a pad oxide layer as a sacrificial oxide layer so that an additional sacrificial oxide layer is no longer needed. The conductive layer will be oxidized together with the substrate in the formation of the gate oxide layer so that the isolation quality will not be degraded.
摘要:
The present invention discloses a current balance circuit for a multiphase DC-DC converter. The current balance circuit comprises a current error calculation circuit, for generating a plurality of current balance signals indicating imbalance levels of a plurality of inductor currents of a plurality of channels of the multiphase DC-DC converter according to a plurality of current sensing signals of the plurality of channels, a time shift circuit, for adjusting pulse widths of a plurality of clock signals according to the plurality of current balance signals, and a ramp generator, for deciding shift levels of a plurality of ramp signals according to the plurality of clock signals.
摘要:
The present invention discloses a current balance circuit for a multiphase DC-DC converter. The current balance circuit comprises a current error calculation circuit, for generating a plurality of current balance signals indicating imbalance levels of a plurality of inductor currents of a plurality of channels of the multiphase DC-DC converter according to a plurality of current sensing signals of the plurality of channels, a time shift circuit, for adjusting pulse widths of a plurality of clock signals according to the plurality of current balance signals, and a ramp generator, for deciding shift levels of a plurality of ramp signals according to the plurality of clock signals.
摘要:
The present invention mainly provides a method to locally form metal silicide on an integral circuit and to avoid the phenomenon of leakage current which is caused by metal silicide formed between the memory cells on the same word line. The method of present invention achieve above objectives by principally using a design rule to adequately arrange elements in proper distance. In an embodiment, in order to form metal silicide layers on an integral circuit and to avoid metal silicide formed between two neighboring memory cell on the same word line, a dielectric layer is previously formed in the spaced region between the two neighboring memory cells and is used as a mask. Thus, in a following selective etching process, a part of silicon substrate within the above spaced region can be protected and not exposed. Therefore, no metal silicide is formed in the spaced region, and the above objectives is achieved.
摘要:
This invention relates to a method for forming the salicide, more particularly, to the method for forming the salicide in the partial region. The present invention uses a nitride layer to be the mask layer to form the salicide in the partial region of the logic circuit. The silicide is formed on the gate and is not formed in the diffusion region, which are in the cell array region. The silicide is formed on the gate and in the diffusion region, which are in the periphery region. The present invention method can make the semiconductor device obtain lower resistance and decrease the leakage defects.
摘要:
A method of forming a metal-insulator-metal (MIM) capacitor is disclosed. The method provides a three dimensional MIM capacitor having upgraded capacitance. A plurality of trenches are formed within the MIM capacitor to increase the charge storage area of the MIM capacitor without occupying additional planar area thereby upgrade the capacitance of the MIM capacitor and the integration.
摘要:
The present invention mainly provides a method to locally form metal silicide on an integral circuit and to avoid the phenomenon of leakage current which is caused by metal silicide formed between the memory cells on the same word line. The method of the present invention achieves the above objectives by principally using a design rule to adequately arrange elements within a proper distance. In an embodiment, in order to form metal silicide layers on an integral circuit and to avoid metal silicide formed between two neighboring memory cell on the same word line, a dielectric layer is first formed in the spaced region between the two neighboring memory cells to be used as a mask. Thus, in a following selective etching process, a part of the silicon substrate within the above spaced region can be protected and not exposed. Therefore, no metal silicide is formed in the spaced region, and the above objective is achieved.
摘要:
The present invention provides a formation method of a trench structure comprising forming a pad oxide layer on a substrate. A first polysilicon layer is formed on the pad oxide layer and an oxide layer is formed thereon. A second polysilicon layer is formed on the oxide layer. The partial second polysilicon layer, the oxide layer, the first polysilicon layer, and the pad oxide layer are removed to expose the partial substrate. The second polysilicon layer and the partial substrate are etched for forming the trench structure in the substrate. An etched depth of the trench structure is well controlled by the etched thickness of the second polysilicon layer.